

Potential of satellite surface soil moisture products for spatially calibrating distributed eco-hydrological models

José Gomis-Cebolla, Alicia Garcia-Arias, Martí Perpinyà-Vallès, Félix Francés

Research Group of Hydrological and Environmental Modelling (GIMHA)

- Distributed eco-hydrological models (DEHM) can provide spatial description of hydrological processes
- Satellite information can be used for the spatial calibration of DEHM (*Ruiz-Pérez et al., 2017; Echeverría et al., 2019*)
- Sentinel-1, SMAP and SMOS surface soil moisture (SSM) products are available at 1km. However, they are not free from errors
- □ Research questions:
 - > How well do SSM products agree with DEHM?
 - > Could they be useful for DEHM calibration?

Tetis eco-hydrological model

□ Hydrological sub-model

□ Dynamic vegetation sub-model

 $= (LUE \cdot \varepsilon \cdot PAR \cdot fPAR - Re) \cdot \varphi_1(B_1) - k_1B_1$

Iberian Mediterranean basins

✓ Representative of the climatology and hydrology of the Mediterranean Bio-geographical in the Iberian Peninsula

SSM is for first 5cm!

	Band	Spatial resolution	Retrieval method			
Sentinel-1 (S1)	С	1 km	TU-Wien change detection method (Wagner, 1998)			
SMAP/S1 (SMAP-BS & SMAP-DIS)	L+C	1 km	Passive (SMAP) + active (Sentinel-1) downscaling (Das et al., 2017)			
SMOS-BEC	L	1 km	SMOS dissaggregation using LST and NDVI (Piles et al., 2011-2012).			
SMAP-Dispatch (SMAP- DPAT)	L	1 km	SMAP and SMOS disaggregation of SSM using the soil			
SMOS-Dispatch (SMOS- DPAT)	L	1 km	evaporative efficiency (SEE). LST and NDVI are used as inputs (Merlin et al., 2013).			

SSM products assessment

SSM products assessment

Multi-objective calibration (Q and SSM)

✓ NSE (1day) + SPAEF (1month)

iiama

✓ TETIS is run in natural mode (250 m)

 $\checkmark\,$ Optimum point: minimum Euclidean distance to the reference point

Multi-objective calibration (Q and SSM)

✓ TETIS is run in natural mode (250 m)

iiama

 $\checkmark\,$ Optimum point: minimum Euclidean distance to the reference point

Results: SSM products comparison

CALIBRATION

VALIDATION

	HOZ			CEI			CAR		
	NSE	SPAEF	R	NSE	SPAEF	R	NSE	SPAEF	R
S1	++	I	-	+++	++	-	++	+++	-
SMAP-DIS	+++	I	+++	+++	I	+++	++	+	+++
SMAP-BS	+++	+	++	+++	-	+	++	+	+++
SMAP-DPAT	+++	+	+++	++	+	+++	++	+++	+++
SMOS-BEC	+++	-	++	++	++	+++	+++	-	+
SMOS-DPAT	+++	+	-	++	++	+++	++	+++	++

	HOZ			CEI			CAR		
	NSE	SPAEF	R	NSE	SPAEF	R	NSE	SPAEF	R
S1	+	-	-	+	+	++	++	+++	-
SMAP-DIS	+++	-	+++	++	-	+++	+	+	+++
SMAP-BS	++	+	++	+	-	++	++	++	+++
SMAP-DPAT	++	+	++	++	+++	+++	+	+++	+++
SMOS-BEC	+	+	+++	+	+	++	++	-	++
SMOS-DPAT	++	-	+	++	+++	++	+	+++	++

Spatial anomalies Validation

iiama

Results: SMAP-DPAT

Temporal correlation

Results: influence of SSM

- We found significant differences in temporal and spatial dynamics of SSM products
- Best SSM products can be identified by the spatial agreement with ecohydrological modelling estimates
 - SMAP-Dispatch provided the best spatial agreement with TETIS in the 3 study cases
- Multi-objective calibration (Q and SSM) income modelling

This work has been funded by Spanish AEI within the program WaterJPI through the project iAqueduct (PCI2019-103729), by the EC Life project ResilientForests (LIFE17 CCA/ES/000063), and by the project Water4Cast funded by Generalitat Valenciana (PROMETEO/2021/074).

