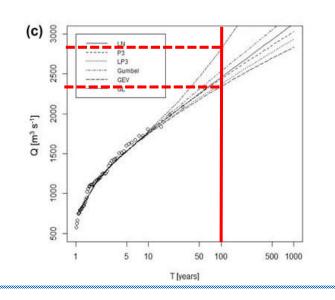
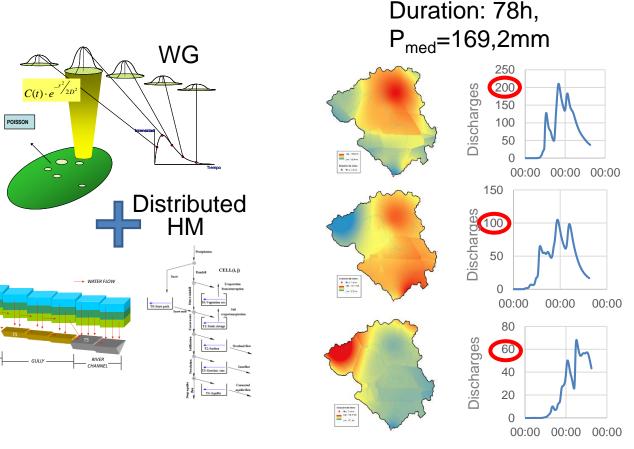


Uncertainty analysis of extreme flood daily discharges using a Weather Generator

Gloria Vignes^{a,b}, Carles Beneyto^a, José Ángel Aranda^a, and Félix Francés^a

^aResearch Group of Hydrological and Environmental Modelling (GIMHA), Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Spain


^bDepartment of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Italy



Three main methods to estimate high return period flood quantiles. They can be roughly grouped into the following categories:

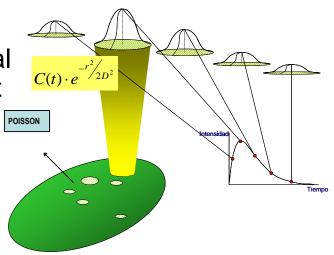
- Statistical (Q_{obs})
- Design Storm
- Synthetic Continuous Simulation

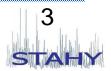
Introduction

Synthetic Continuous Simulation:

Stochastic Weather Generator (WG) + Hydrological simulation

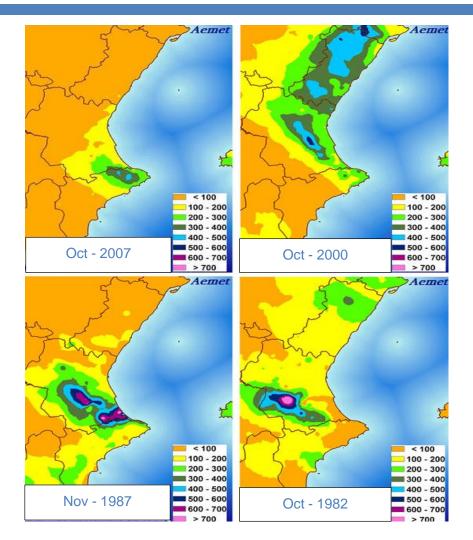
- ➢ Continuous long series of meteorological data with similar statistical properties as those of observed data → Initial soil moisture content
- > Parametric WG \rightarrow different weather scenarios can be simulated
- Multi-site WG (spatio-temporal variability)


*Cons:

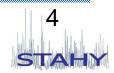

- ➤ Adequacy of the meteorological model (sub-daily → high computational requirements)
- Adequacy of hydrological model

Still difficult to obtain reliable quantile estimates: HIGH UNCERTAINTY

Additional information is needed (e.g., regional precipitation studies)


Introduction

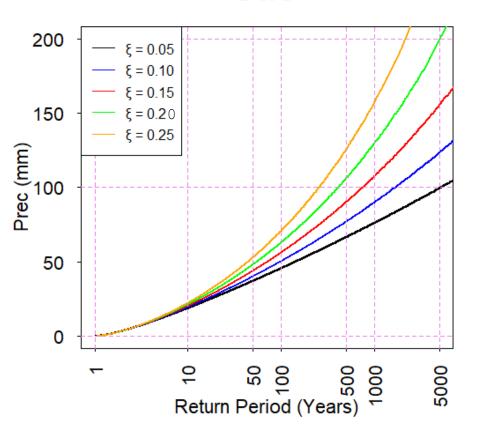
Arid and semi-arid climates: extreme rainfall regime


Rainfall is concentrated in short periods of time, and these are followed by long drought conditions.

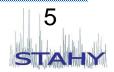
High precipitation events every 7-8 years on average
Huge amounts of precipitation (up to 900mm in 24h)
Storm duration between 2-3 days
Mainly in autumn months (SON)
In the east of Spain: Mesoscale Convective Systems
High spatial and temporal variability

Complicates even more Flood Frequency Estimation of high return period flood quantiles

E-GPD


GWEX (Evin et al., 2018)

Multi-site Weather Generator of daily P and max and min Temp, focused on extreme events


Precipitation amounts: Extended Generalized Pareto Distribution (E-GPD) (*Papastathopoulos and Tawn, 2013*)

$$F(x;\lambda) = \left[1 - \left(1 + \frac{\xi x}{\sigma}\right)^{-1/\xi}\right]^k$$

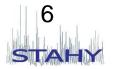
 $\sigma \rightarrow$ Scale Parameter $\kappa \rightarrow$ Transf. Parameter $\xi \rightarrow$ Shape Parameter (ξ directly affecting the upper tail)

Exploring the uncertainty of Weather Generators' extreme estimates in different practical available information scenarios (*Beneyto et al., 2022, under review*)

Information Scenarios

- > With no additional information
 - **0.** The ξ parameter value is set to 0.05 (default) as proposed in Evin et al. (2018)

1. The value of the parameter ξ is estimated by fitting an E-GPD to the X₁₀₀ estimated from the available observation


> With an additional regional study of maximum daily precipitation

2. Parameter ξ is estimated with the regional X₁₀₀ (if not regional E-GPD)

3. The parameter ξ is set to the regional value (if regional E-GPD)

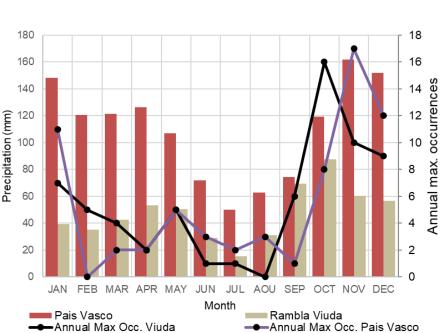
For simplicity, we will assume that the regional study is "perfect" – no uncertainty

Quantify the uncertainty of the higher discharge quantile estimates generated by synthetic continuous simulation (Weather Generator + Hydrological Model) in different scenarios

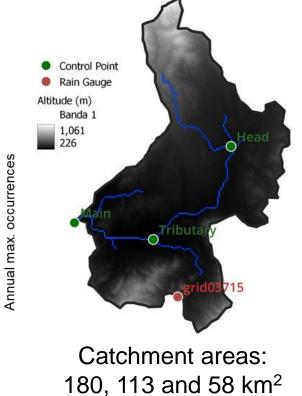
- Different precipitation regimes —
- Different hydrological characteristics of the basin
- Different climate extremality \longrightarrow Variation of shape parameter ξ
 - Different synthetic populations
 - Different parameters in the Hydrological Model

Monte Carlo simulation over a synthetic population, measuring uncertainty through:

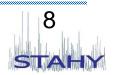
- Relative Root Mean Squared Error (RRMSE)
- Relative bias (RB)
- Coefficient of Variation (CV)



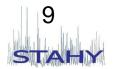
Synthetic population


66 years sample length of one raingauge station in:

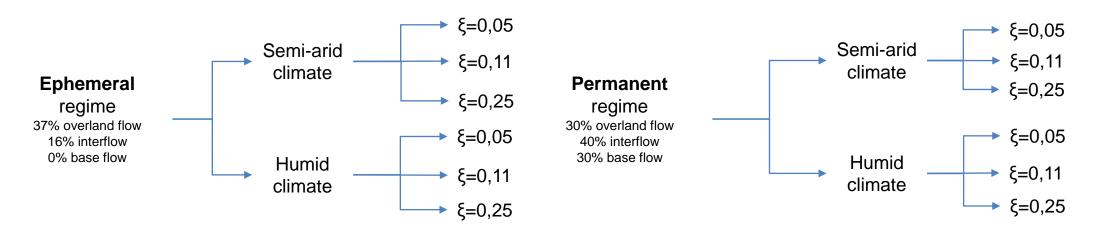
- Semi-arid climate -> Rambla de la Viuda (east coast of Spain)
- Humid climate -> Deba (north of Spain)


Verieble	Ctatistic	Valu		-	
Variable	Statistic	Semi-arid	Humid	Units	_
Daily Prec (P _d)	Mean	1.56	3.60	mm	
	Mean > 0.1	6.28	6.19	mm	
	Sd	6.81	7.23	mm	
	Sd > 0.1	12.55	8.60	mm	
	Days with Prec > 0.1	24.77	58.17	%	
	Max.	206.94	110.12	mm	_
Annual Prec. (P _a)	Mean	569.86	1315.69	mm	_
	Mean	73.35	55.30	mm	
Annual max. Prec (P _{am})	CV	0.56	0.28	-	
	Coeff. Skewness	1.43 1.02		-	
	Coeff. Kurtosis	1.66	4.38	-	_

All simulations were carried out at 3 different control points



Methodology


<u>POPULATION</u> : Very long daily synthetic discharges		 Monte Carlo Simulation Typical sample length: 60 years P Perfect P₁₀₀ Different extremality: ξ (0.05; 0.11; 0.25) Different precipitation regimes: arid/semi-arid and humid Different hydrological characteristics of the basin 						
15,000	years	50 realizations	years					
$\begin{array}{c cccc} T & T & P \\ \hline T = 2 \ yrs & T = 5 \ yrs & T = 10 \ yrs & T = 25 \ yrs & T = 50 \ yrs & T = 50 \ yrs & T = 75 \ yrs & T = 100 \ yrs & T = 200 \ yrs & T = 500 \ yrs & T = 500 \ yrs & T = 1,000 \ yrs &$	Spulation Q (mm) 55.7 81.3 100.7 125.8 146.7 158.8 168.4 192.0 238.1 262.8	$RRMSE(\hat{X}_{T}) = \frac{\sqrt{1/n\sum(\hat{X}_{T,i} - X_{T})^{2}}}{X_{T}}$ $RB(\hat{X}_{T}) = \frac{1/n\sum(\hat{X}_{T,i} - X_{T})}{X_{T}}$ $Cv(\hat{X}_{T}) = \frac{\sqrt{1/n\sum(\hat{X}_{T,i} - \overline{X}_{T})^{2}}}{\overline{X}_{T}}$	TT = 2 yrsT = 5 yrsT = 10 yrsT = 25 yrsT = 50 yrsT = 75 yrsT = 100 yrsT = 200 yrsT = 500 yrsT = 500 yrsT = 1,000 yrs	Estimated Q (mm) 53.2 78.2 105.2 126.4 151.3 160.8 165.6 198.9 235.1 254.6				

Methodology

Variable	Statistic	Semi-arid climate			Humid climate			Unite		
	Statistic	Sample	ξ = 0.05	ξ = 0.11	ξ = 0.25	Sample	ξ = 0.05	ξ = 0.11	ξ = 0.25	Units
Daily Prec. (P _d)	Mean	1.56	1.57	1.57	1.56	3.60	3.60	3.60	3.60	mm
	Mean > 0.1	6.28	7.74	7.65	7.37	6.19	6.75	6.70	6.53	mm
	SD	6.81	6.19	6.35	6.90	7.23	7.15	7.34	8.05	mm
	SD > 0.1	12.55	11.90	12.27	13.47	8.60	8.65	8.92	9.93	mm
	Days with Prec > 0.1	24.77	20.22	20.49	21.25	58.17	53.25	53.75	55.03	%
	Max	206.94	249.51	373.15	846.69	110.12	208.37	263.20	677.65	mm
Annual Prec. (P _a)	Mean	569.86	572.46	572.62	569.76	1315.69	1313.27	1315.27	1313.08	mm
Annual max Prec. (P _{am})	Mean	73.35	59.56	62.96	70.77	55.30	53.51	58.07	72.18	mm
	CV	0.56	0.43	0.48	0.67	0.28	0.31	0.36	0.57	-
	Coeff. Skewness	1.43	1.55	2.02	3.53	1.02	1.41	1.81	3.63	-
	Coeff. Kurtosis	1.66	7.25	10.68	27.61	4.38	6.91	9.54	30.82	-

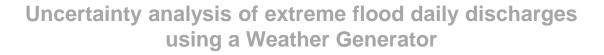
GULL

HILLSLOPE

Developed by our group since 1994

Integral model: water resources, floods, erosion, sediments, dynamic vegetation, crop production, N-C cycle,...with different temporal discretization

Conceptual (tank structure) model with **physically based parameters**


Distributed in space:

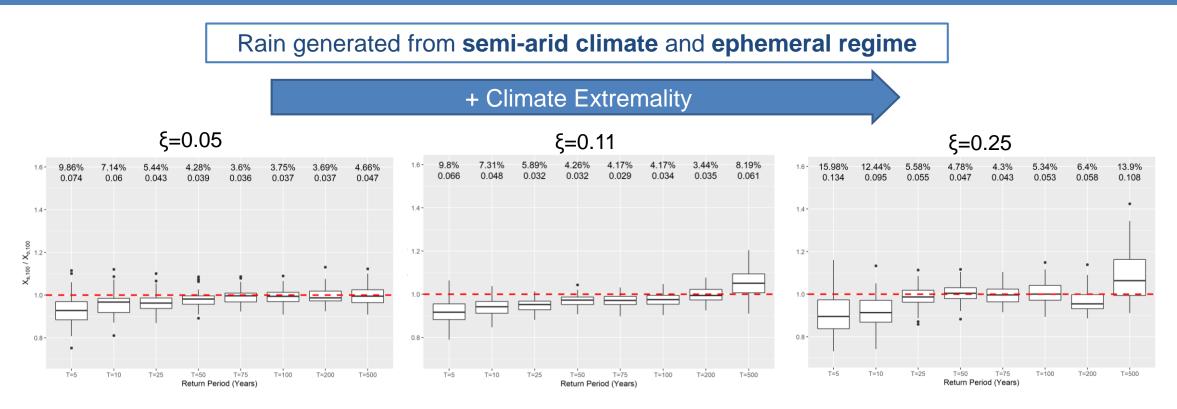
- Reproduces the spatial variability of hydrological cycle
- Uses all spatial information available
- ➢ Gives results at any point

Incorporates a **split effective parameter structure** *(Francés et al., 2007)*

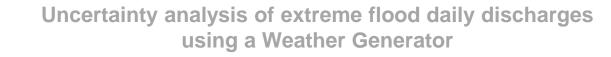
- Parsimonious: Significant reduction of the number of the variables to be calibrated => facilitates model calibration stage
- > Maintains the spatial pattern of the parameter maps

XO

WATER FLOW


RIVER

CHANNEL


CELL (i,i)


Overland f

- > As climate extremality increases, both RRMSE and CV increase
- > Underestimation of lower quantiles, overestimation of higher quantiles
- > As expected, quantiles around X_{100} are less uncertain

Results – Precipitation Regime

17.07%

0.046

T=500

37.43%

0.069

T=500

Semi-arid climate ξ **=0.05 ٤ =0.05** 1.6 -5.35% 1.6 -9.86% 5.44% 4.28% 3.6% 3.75% 3.69% 4.66% 4.78% 2.76% 2.11% 1.41% 2.2% 4.5% 7 14% 0.015 0.014 0.013 0.025 0.074 0.06 0.043 0.039 0.036 0.037 0.037 0.047 0.021 0.019 0.014 1.4 -1.4 X_{8,100} / X_{0,100} 001^{'0}X / 001'sX Extremality 0.8 0.8 T=5 T=10 T=75 T=200 T=5 T=500 T=25 T=50 T=100 r=25 T=100 T=200 **5 =0.25 ٤ =0.25** Climate 13.9% 1.6 -4.75% 5.34% 2.27% 2.55% 1.8% 8.85% 1.6 -15.98% 12.44% 5.58% 4.78% 4.3% 5.34% 6.4% 3.1% 0.026 0.134 0.095 0.055 0.047 0.043 0.053 0.058 0.108 0.02 0.02 0.022 0.02 0.018 0.04 1.4-1.4 -+001^{,0}X / 001^{,8}X 001^{,0}X / 001 × 0.8-8.0

Humid climate

Rain generated for ephemeral regime

Semi-arid climate more uncertain respect to humid climate, except for T=500 quantile

Lower sensitivity to climate extremality changes in humid climates

T=5

T=25

T=50

Return Period (Years)

T=10

T=75

T=100

T=200

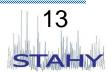
T=500

Uncertainty analysis of extreme flood daily discharges using a Weather Generator

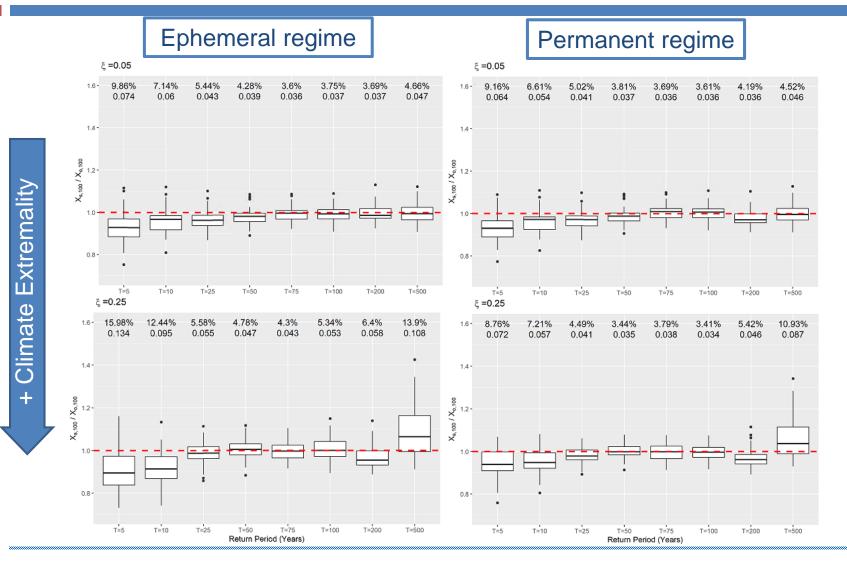
T=25

T=50

T=75


Return Period (Years)

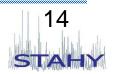
T=100


T=200

T=10

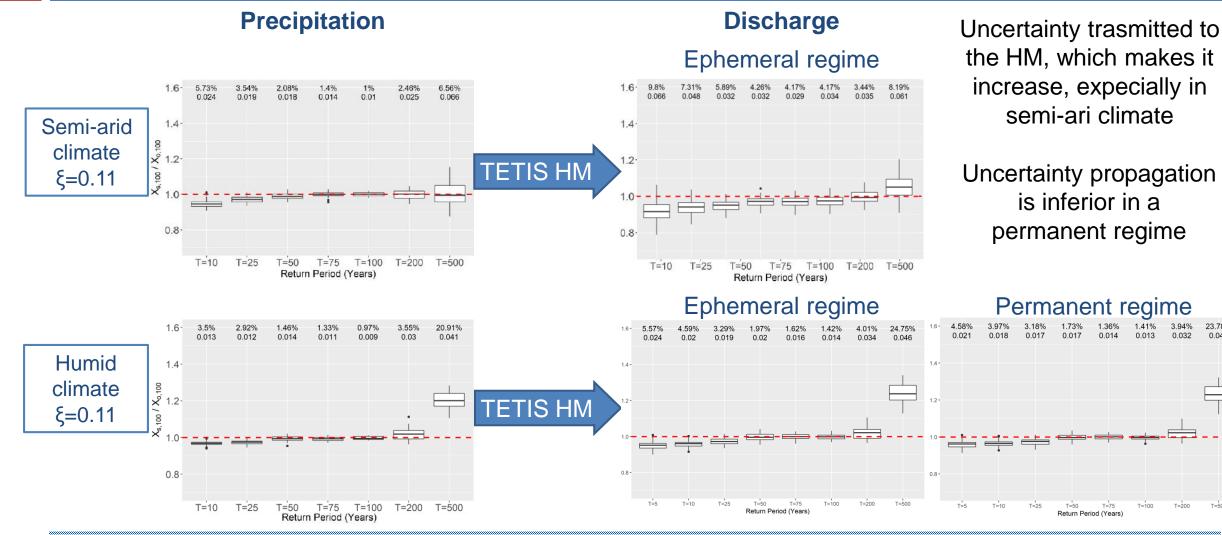
T=5

Results - Hydrological Characteristics of the Basin



Rain generated from semi-arid climate

Non-significant changes but less uncertainty in permanent regime, more evident for high quantiles and more extreme climates



iiama

Results – Uncertainty transmission

Uncertainty analysis of extreme flood daily discharges using a Weather Generator

23.78%


0.043

T=50

- As obtained in the preliminary study (Beneyto et al., 2022, under review), additional information is needed to reduce the uncertainty of P and Q
- Climate extremality has been demonstrated to be a key factor for the weather generator performance. As climate extremality increases, there is more uncertainty on the quantile estimates, especially in those associated with high return period
- For arid and semi-arid climates, where the precipitation regime is less homogeneous, the uncertainty of the quantile estimations is clearly higher compared to humid precipitation regimes, where the weather generator has been proved to perform optimally
- No major differences can be found between ephemeral and permanent regimes, in terms of quantile uncertainty
- Climate extremality has been proved to be the most sensitive factor, affecting especially high return period quantile estimates, therefore, special attention must be paid when implementing continuous simulation in arid and semi-arid climates
- Uncertainty propagates through Hydrological Model, being this propagation lower in the case of humid climates and permanent regimes

Thanks for your attention!

Research Group of Hydrological and Environmental Modeling Iluvia.dihma.upv.es Research Institute of Water and Environmental Engineering Universitat Politècnica de València

This study has been supported by the Ministry of Science, Innovation and Universities of Spain through the Research Projects TETISCHANGE (RTI2018-093717-B-100).

