

DEPARTAMENTO DE INGENIERÍA HIDRÁULICA Y MEDIO AMBIENTE

DESARROLLO DE UN MODELO ECOHIDROLÓGICO PARA EL ANÁLISIS DE LA DINÁMICA DE ECOSISTEMAS RIPARIOS

Autora: Alicia García Arias Director: Dr. Félix Francés García

Valencia, Julio 2015

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Alumna: Alicia García Arias Directo

Director: Félix Francés García

Las Riberas

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Ribera: definición y características

1. Introducción

- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Ribera

Vegetación de ribera

- Gran densidad de biomasa, diversidad y complejidad estructural
- Diversidad de hábitats (fauna terrestre y acuática)
- Estabilidad del cauce (retención de sedimentos)
- Calidad del agua (regulación de temperatura, barrera frente a contaminantes, etc.)

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Ribera

Vegetación de ribera

Relación entre caudales y vegetación riparia

- Profundidad de la capa freática: factor esencial de desarrollo
- Perturbaciones hidrológicas: reinicio de la sucesión
- ➤ Vegetación riparia ↔ Hidrología

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Ribera

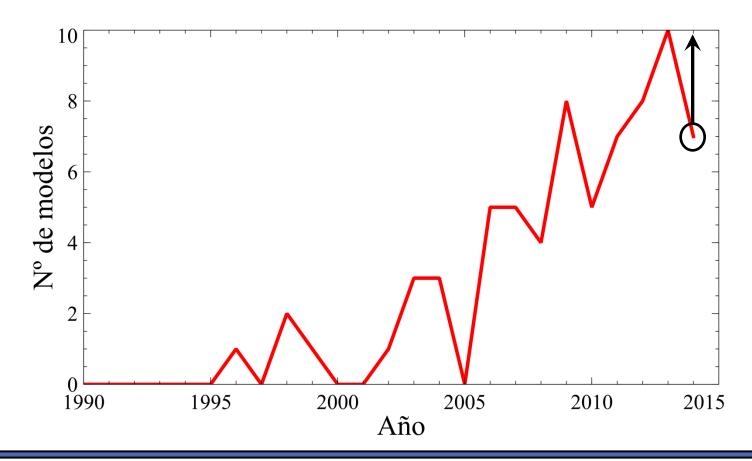
Vegetación de ribera

Relación entre caudales y vegetación riparia

Afecciones antrópicas

- El estado de las riberas en España no es bueno
- Gestión hidrológica → requerimientos mínimos para su correcto desarrollo
 - Necesidad de herramientas de predicción

DEPARTAMENTO DE INGENIERÍA HIDRÁULICA Y MEDIO AMBIENTE


Antecedentes

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

"Riparian Vegetation Model"

Busqueda en Google Scholar

Tesis Doctoral: DESARROLLO DE UN MODELO ECOHIDROLÓGICO PARA EL ANÁLISIS DE LA DINÁMICA DE ECOSISTEMAS RIPARIOS

DEPARTAMENTO DE INGENIERÍA HIDRÁULICA Y MEDIO AMBIENTE

Antecedentes

Índice

1. Introducción

- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- **5. Modelos de referencia**
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Modelos de vegetación de ribera

Modelo	Referencia
Determinístico empírico, regresión (profundidad del nivel freático)	Stromberg, 1993
Determinístico conceptual (profundidad del nivel freático, distancia al cauce, uso suelo)	Bogner et al., 1996
MODFLOW: modelo determinístico conceptual (curvas fijas de ET)	Harbaugh y McDonald, 1996
Recruitment Box : determinístico conceptual (supervivencia de semilla, elevación caudal medio)	Mahoney y Rood, 1998
ETS1: modelo determinístico conceptual (curvas fijas de ET)	Banta, 2000
REMM : modelo determinístico conceptual (ET, posición en el dosel vs altura, ubicación respecto al cauce)	Altier et al., 2000
RIP-ET: modelo determinístico conceptual (curvas fijas de ET)	Maddock III y Baird, 2003
Determinístico conceptual (duración de inundación, uso del suelo, intensidad del pastoreo)	Baptist et al., 2004
Combinado determinístico y estocástico (impactos, crecimiento función ET, reclutamiento estocástico)	Hooke et al., 2005
Determinístico conceptual (curvas gausianas de respuesta vegetal, duración de inundación)	Friedman et al., 2006
Modelo estocástico (probabilidad de biomasa)	Camporeale y Ridolfi, 2006
Determinístico conceptual (Función logística de crecimiento de biomasa)	Perucca et al., 2006
CAESAR: dinámico, determinístico conceptual (crecimiento lineal, resistencia a la erosión del lecho)	Coulthard et al., 2007
RibAV : determinístico físicamente basado (bienestar vegetal, humedad del suelo, acceso nivel freático, ET)	Morales, 2010
CASiMiR-vegetation: dinámico, determinístico conceptual (reclutamiento, impactos y evolución)	Benjankar <i>et al.</i> , 2011
Combinado determinístico y estocástico (impactos, crecimiento logístico, reclutamiento estocástico)	Ye et al., 2013

Tesis Doctoral: DESARROLLO DE UN MODELO ECOHIDROLÓGICO PARA EL ANÁLISIS DE LA DINÁMICA DE ECOSISTEMAS RIPARIOS

Alumna: Alicia García Arias Director: Félix Francés García

Objetivos principales

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Objetivo 1: Revisión e implementación de modelos preexistentes de referencia

Objetivo 2: Desarrollo de un nuevo modelo útil para la toma de decisiones en gestión hidrológica

Objetivo 3: Implementación del modelo para comprobar que mejora los resultados

Objetivo 4: Análisis de **escenarios** que demuestre que el modelo es sensible a los cambios asociados y que los resultados son representativos

Caso de estudio

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Terde (Río Mijares) UTM30-ETRS89: 689183, 4448735 m

- Sup. cuenca: 665 km²
- > 539 m longitud, 850 msnm
- » Régimen de flujo: permanente
- > No existe regulación aguas arriba
- Vegetación dominante:
 - Chopos y sauces
 - Carrizo y cañas
 - Encinas y enebros
- > Sustrato variado

DEPARTAMENTO DE INGENIERÍA HIDRÁULICA Y MEDIO AMBIENTE

Series hidro-meteorológicas

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

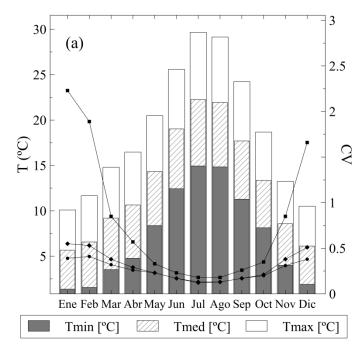
Serie de precipitaciones

$$w_{0j} = \frac{\frac{1}{d_{0j}^{2}}}{\sum_{i=1}^{n} \frac{1}{d_{0j}^{2}}} \qquad d_{0j} = \sqrt{(x_{0} - x_{j})^{2} + (y_{0} - y_{j})^{2}}, \quad j = 1, ..., n$$

$$P_{0} = \sum_{j=1}^{n} w_{0j} P_{j}$$

Tramo	Nombre de la estación	Provincia	Indicativo	Altitud	Periodo de datos disponibles
Terde	La Puebla de Valverde	Teruel	8459	1129	08/42-05/96
	Mora de Rubielos	Teruel	8466	1039	03/48-11/81
	Rubielos de Mora	Teruel	8470	949	03/55-12/05
	San Agustín	Teruel	8473	959	04/53-09/09
	Sarrión	Teruel	84630	981	11/85-08/09
	Sarrión Comarcal	Teruel	8463P	900	07/92-01/08
	Sarrión (La Escaleruela)	Teruel	8464	860	03/48-11/94

Series hidro-meteorológicas


Índice

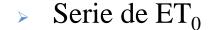
- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

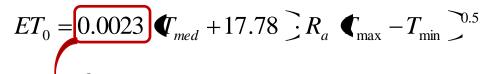
Series de temperaturas

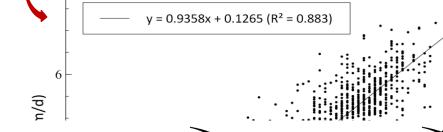
$$T_0 = \sum_{j=1}^n w_{0j} \left[T_j + \beta \left(-z_j \right) \right]_{i=15}^{20}$$

$$\beta = -6.5^{\circ} C / 1000m$$

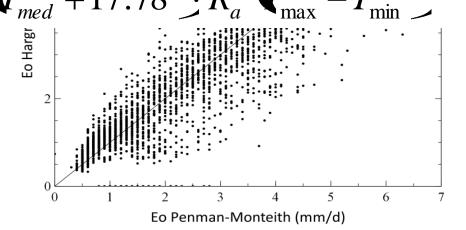
Tramo	Nombre de la estación	Provincia	Indicativo	Altitud	Periodo de datos disponibles
Terde	Sarrión	Teruel	84630	981	01/86-07/09
	Sarrión Comarcal	Teruel	8463P	900	07/92-01/08


DEPARTAMENTO DE INGENIERÍA HIDRÁULICA Y MEDIO AMBIENTE

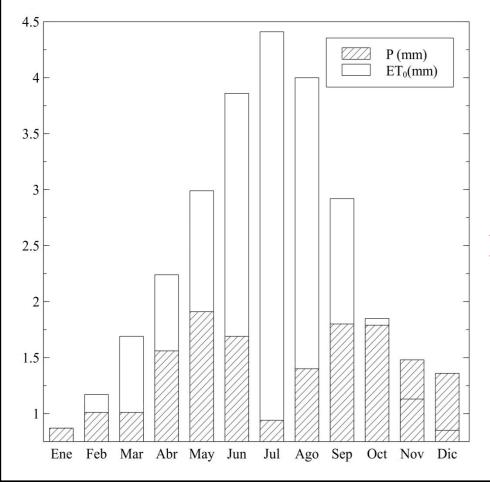

Series hidro-meteorológicas


Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de <u>cambio</u> global
- 8. Conclusiones


Series hidro-meteorológicas históricas

$$ET_0 = 0.001887 \, \P_{med} + 17.78 \, R_a \, \P_{med}$$



Series hidro-meteorológicas

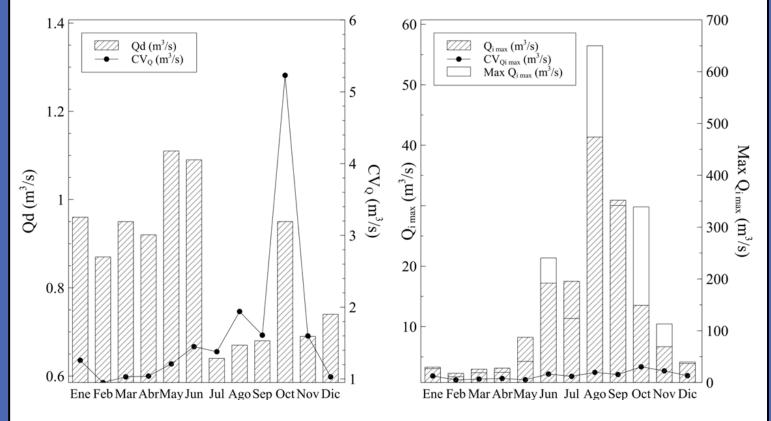
Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Típicamente mediterráneo semiárido

Periodo: 1949 - 2009

P= 506 mm/año

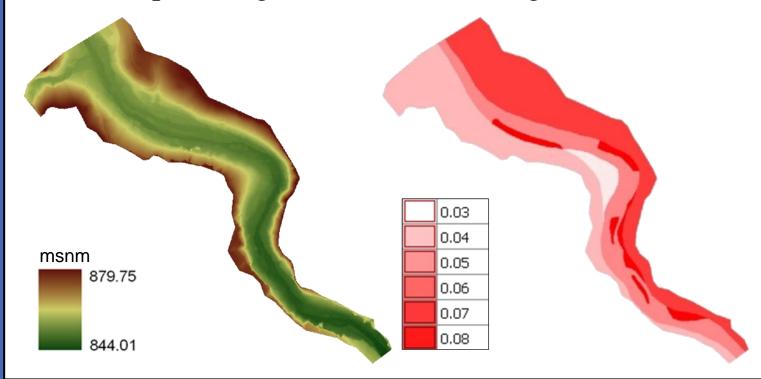

 $ET_0 = 843 \text{ mm/año}$

 $ET_0 > P$

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Régimen de flujo permanente (1949-2009)

 Q_d : 0.864 m³/s

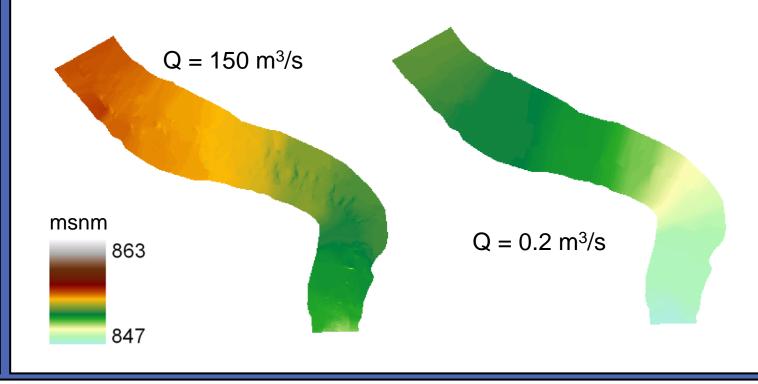


Tesis Doctoral: DESARROLLO DE UN MODELO ECOHIDROLÓGICO PARA EL ANÁLISIS DE LA DINÁMICA DE ECOSISTEMAS RIPARIOS

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Simulaciones hidráulicas: GUAD 2D

- Modelo de elevación digital (msnm)
- Capa de rugosidades de Manning

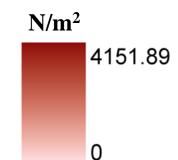


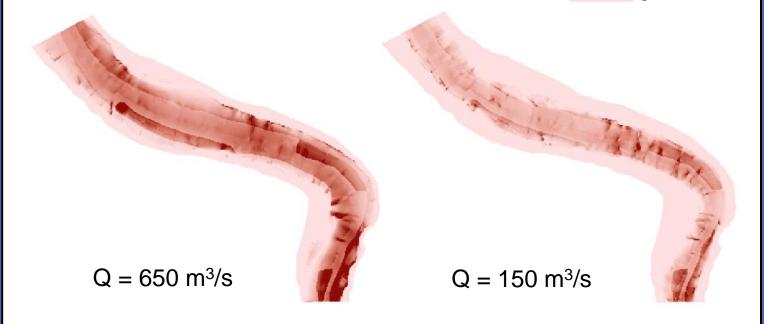
Tesis Doctoral: DESARROLLO DE UN MODELO ECOHIDROLÓGICO PARA EL ANÁLISIS DE LA DINÁMICA DE ECOSISTEMAS RIPARIOS

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Elevaciones lámina de agua y nivel freático

- NF horizontal bajo los bancos
- Algoritmo de proximidad de Thiessen

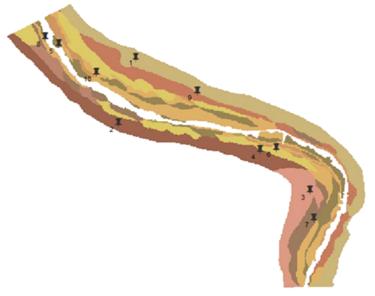

Mapas hidráulicos


Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Tensión tangencial

$$\tau = \rho \cdot u^{*2} \qquad u^* = 2.102 \frac{v \cdot n}{y^{1/6}}$$

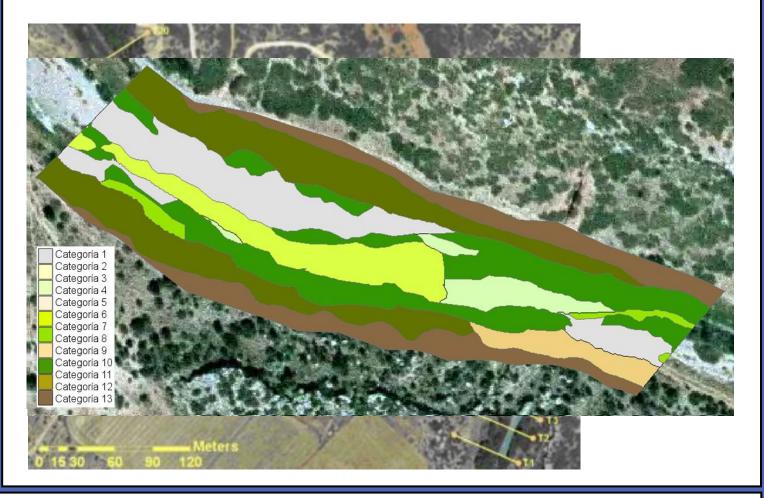

Inputs de suelos

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Tipos y parámetros de suelo

Parámetros


Humedad a capacidad de campo [] (típicamente a 33 Kpa)
Porosidad []
Conductividad hidráulica saturada [mm/hr]
Presión de burbujeo [Kpa]
Índice de porosidad []

Inputs de vegetación

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Mapas de Vegetación

Tesis Doctoral: DESARROLLO DE UN MODELO ECOHIDROLÓGICO PARA EL ANÁLISIS DE LA DINÁMICA DE ECOSISTEMAS RIPARIOS

Alumna: Alicia García Arias Director: Félix Francés García

DEPARTAMENTO DE INGENIERÍA HIDRÁULICA Y MEDIO AMBIENTE

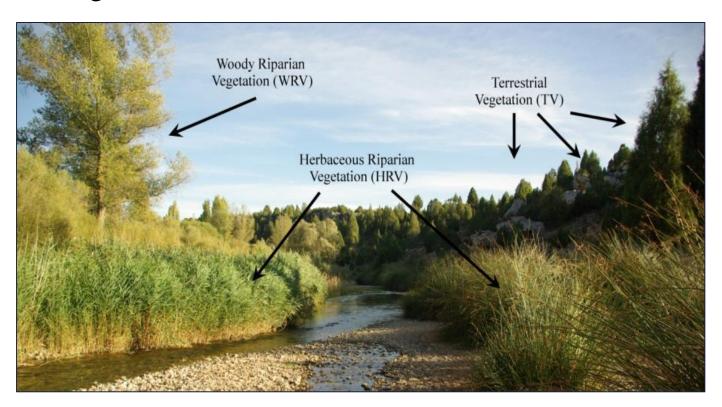
Inputs de vegetación

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Clasificaciónes vegetales

- Diversidad especies → funciones y estructuras
- Tipos funcionales de vegetación
 - Especies sin parentesco filogenético con **papel** similar en los procesos del ecosistema
 - Respuesta similar a múltiples factores ambientales
- Fases de sucesión vegetal
 - Estadios tempranos estadios maduros climax
 - Perturbaciones hidrológicas → modifican la estructura riparia (reinicio de sucesión)

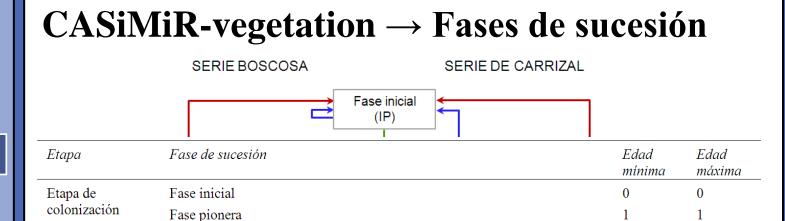

Inputs de vegetación

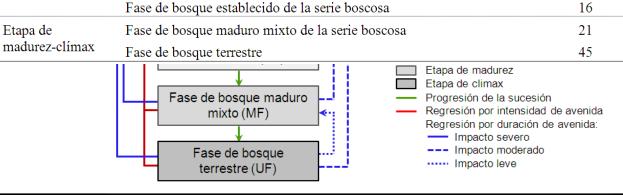
Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

RibAV → **Tipos** funcionales

- Vegetación riparia herbácea (HRV) y leñosa (WRV)
- Vegetación terrestre (TV)




Director: Félix Francés García

Inputs de vegetación

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Fase herbácea de la serie de carrizal

Fase arbustiva de la serie de carrizal

Ease herbácea de la serie boscosa

Fase arbustiva de la serie boscosa

Fase de sucesión temprana de la serie boscosa

Etapa de

transición

Etapa de

3

10

10

15

20

44

11

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Nuevo enfoque:

Tipos funcionales de sucesión vegetal (SPFTs)

- 2 series riparias: carrizal (RE) y boscosa (CW)
- 1 serie terrestre (TV)

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Criterios comunes para todos los modelos

- Tramo: Terde del Río Mijares (230 m de longitud)
- Resolución espacial: 1 metro
- Periodos de tiempo entre:
 - 1 de Julio de 2000
 - 31 de Agosto de 2006
 - 31 de Diciembre de 2009

Cal/Val: **2000-2006**

Val: **2006-2009**

Val: **2000-2009**

- Metodología de evaluación:
 - Comparación celda a celda con mapas objetivo
 - Índices (funciones objetivo)
- > Reclasificaciones vegetales:
 - Fases, Líneas y RI-TV-MIX

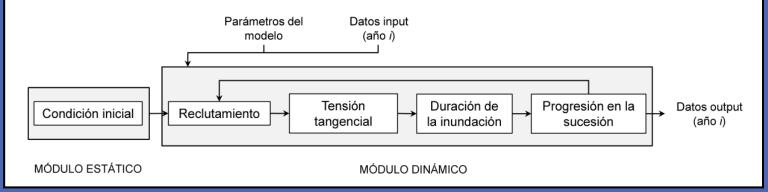
- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Índices utilizados como funciones objetivo

$$CCI = \frac{1}{N} \sum_{i=1}^{n} \boldsymbol{\chi}_{ii}$$

$$k = \frac{f_0 - f_e}{1 - f_e}$$

$$k* = \frac{f_0(w) - f_e(w)}{1 - f_e(w)}$$


	SIMULADO			
00		TIPO 1	TIPO 2	TIPO 3
VAL	TIPO 1	4	0	0
OBSERVADO	TIPO 2	0	2	1
OF	TIPO 3	1	1	3

Sensibilidad = VP / (VP + FN)Especificidad = VN / (VN + FP)Tasa omisión = FN / (VN + FN)Tasa comisión = FP / (VP + FP)Exactitud = (VP + VN) / N

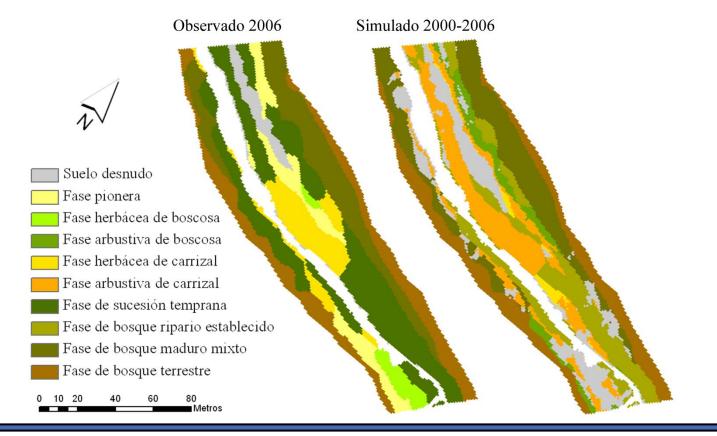
- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Modelo CASiMiR-vegetation (Benjankar et al., 2011)

- Paso de tiempo anual
- Variable de estado: Fases de sucesión
- Modelo dinámico (módulo estático de condición inicial)
- Procesos físicos son representados mediante:
 - Elevación sobre el nivel freático
 - Tensión tangencial (perturbaciones hidrológicas)

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

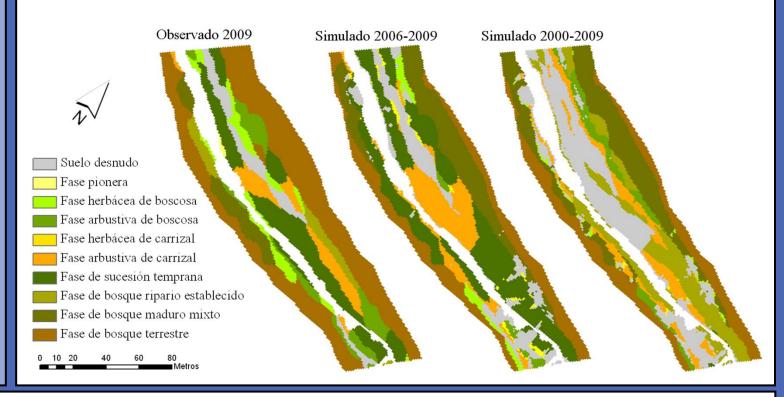
Parámetros de calibración


- Elevación sobre el nivel freático crítica para el reclutamiento (HBWL)
- Tensión tangencial crítica (τ_c)

Parámetro	Tramo Terde (Río Mijares)
HBWL _c para el reclutamiento de la serie de carrizal en la zona de banco (m)	> 0.47
HBWL _c para el reclutamiento de la serie de carrizal en la zona de llanura de inundación (m)	< 1.2
HBWL _c para el reclutamiento de la serie boscosa en la zona de llanura de inundación (m)	> 1.2
HBWL _c para la zona de perturbaciones por socavación	< 0.75
τ _c para las fases de la etapa de colonización (N/m²)	10 (IP)
	60 (PP)
τ_c para las fases propias de la serie boscosa (N/m²)	70 (HP)
	90 (SP)
	140 (ES)
	200 (EF)
	65 (MF)
	300 (UF)
τ_c para las fases propias de la serie de carrizal (N/m²)	150 (HP*)
	150 (SP*)

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Resultados


$$CCI_{00-06} = 0.378, \ k_{00-06} = 0.321$$

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Resultados

- $CCI_{06-09} = 0.383, k_{06-09} = 0.257$
- $CCI_{00-09} = 0.287, \ k_{00-09} = 0.182$

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

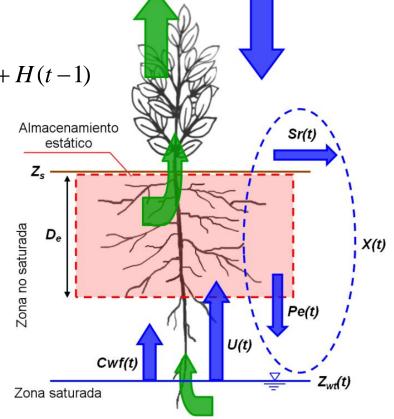
Modelo RibAV (Morales, 2010)

- Modelo estático
- Paso de tiempo diario
- Variable de estado: tipo funcional de vegetación
- Procesos físicos son representados mediante:
 - Disponibilidad de agua
 - Capacidad de la planta para evapotranspirar
- > Simula todos los tipos funcionales de vegetación posibles y decide mediante **comparación del ET**_{idx}

$$ET_{idx} = \frac{1}{n} \sum_{t=1}^{n} \frac{ET(t)}{Cv \cdot ET_0(t)}$$

P(t)

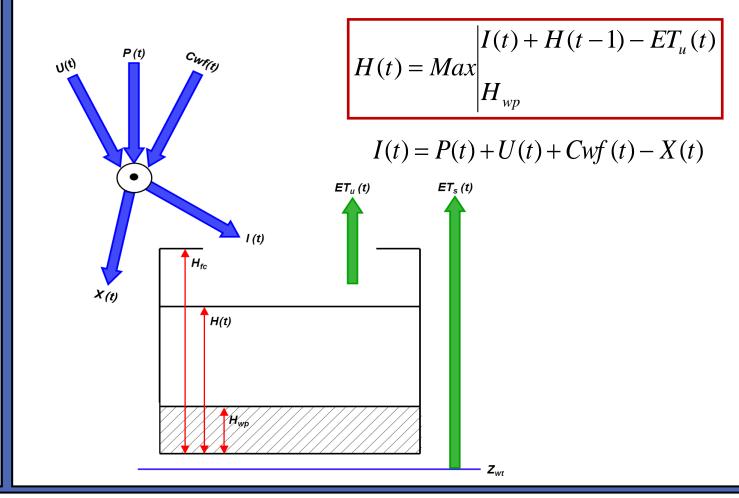
Índice


- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Balance hídrico conceptual

- Almacenamiento capilar
- Flujos principales de agua

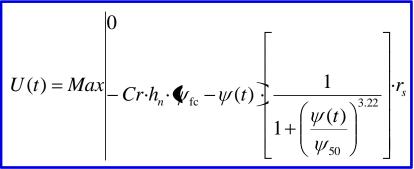
$$X(t) = P(t) + U(t) + Cwf(t) - H_{fc} + H(t-1)$$


- Flujos entre la parte superior no saturada y la zona saturada:
 - Flujo vertical no saturado
 - Ascenso hidráulico radicular

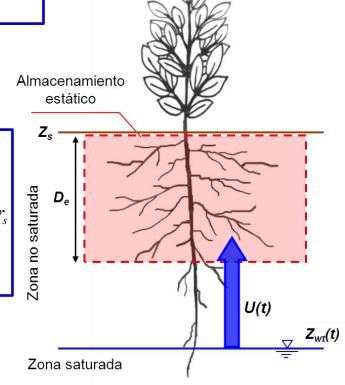
ET(t)

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Almacenamiento capilar

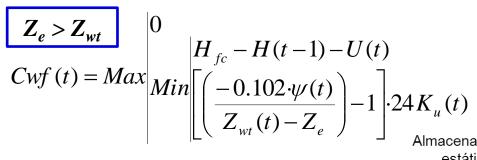

Tesis Doctoral: DESARROLLO DE UN MODELO ECOHIDROLÓGICO PARA EL ANÁLISIS DE LA DINÁMICA DE ECOSISTEMAS RIPARIOS

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones


Elevación del nivel freático

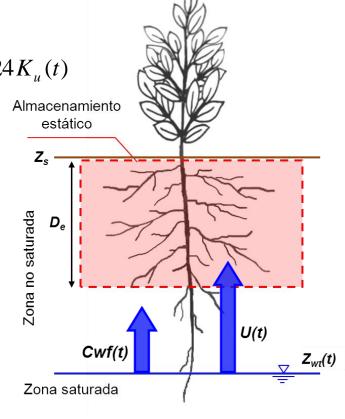
$$Z_{wt}(t) = Z_{wt, j-1} + \left(\frac{Q(t) - Q_{j-1}}{Q_j - Q_{j-1}}\right) \cdot Q_{wt, j} - Z_{wt, j-1}$$

Ascenso hidráulico radicular



$$\psi(t) = \frac{\psi_b}{\left(\frac{H(t)}{D \cdot \phi}\right)^{1/\lambda}}$$
 Campbell (1974)

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones


Flujo capilar ascendente

$$K_{u}(t) = K_{s} \cdot \left(\frac{\psi_{b}}{\psi(t)}\right)^{3\lambda+2}$$
 Campbell (1974)

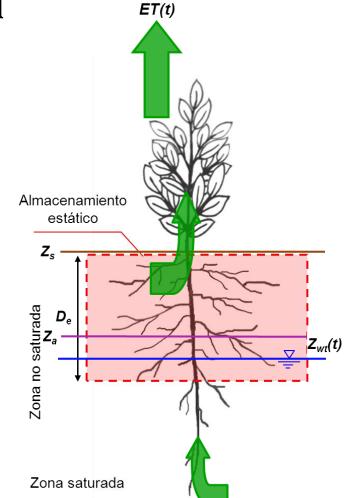
 $Zwt \ge Ze$

$$Cwf(t) = H_{fc} - H(t-1) - U(t)$$

Modelo RibAV

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones


Evapotranspiración real

$$ET(t) = ET_u(t) + ET_s(t)$$

$$Za > Zwt \ge Ze$$

$$ET_{u}(t) = r_{u} \cdot Cv \cdot ET_{0}(t) \cdot \left(1 - \frac{Z_{wt} - Z_{e}}{Z_{a} - Z_{e}}\right)$$

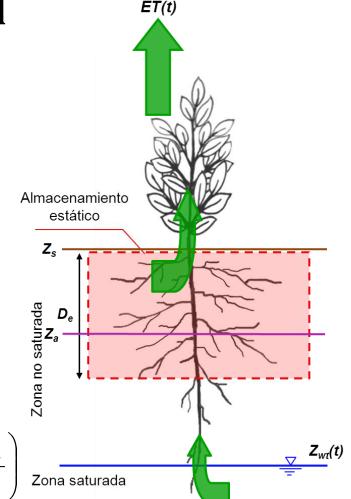
$$ET_{s}(t) = Min \begin{vmatrix} Cv \cdot ET_{0}(t) - ET_{u}(t) \\ r_{s} \cdot Cv \cdot ET_{0}(t) \cdot \left(1 - \frac{Z_{wt} - Z_{e}}{Z_{a} - Z_{e}}\right) \end{vmatrix}$$

Modelo RibAV

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Evapotranspiración real


$$ET(t) = ET_u(t) + ET_s(t)$$

$$Z_e > Z_{wt} \ge Z_r$$

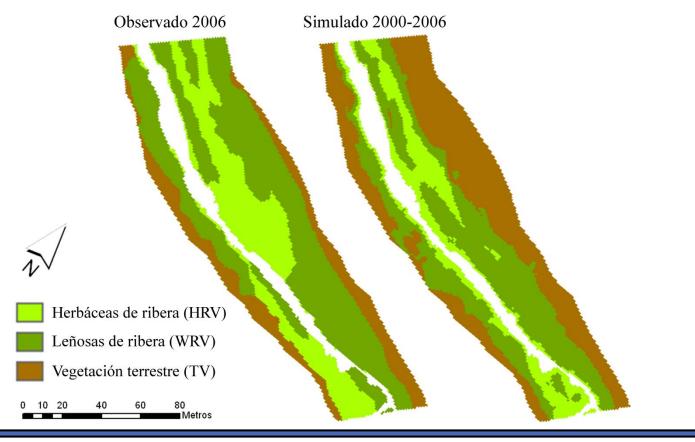
$$ET_{u}(t) = Min \begin{vmatrix} H(t-1) - H_{wp} \\ r_{u} \cdot Cv \cdot ET_{0}(t) \cdot H_{rel}(t) \end{vmatrix}$$

$$H_{rel}(t) = Min \frac{1}{H(t-1) - H_{wp}} \frac{1}{H^* - H_{wp}}$$

$$ET_{s}(t) = Min \begin{vmatrix} Cv \cdot ET_{0}(t) - ET_{u}(t) \\ r_{s} \cdot Cv \cdot ET_{0}(t) \cdot \left(\frac{Z_{wt}(t) - Z_{r}}{Z_{e} - Z_{r}} \right) \end{vmatrix}$$

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

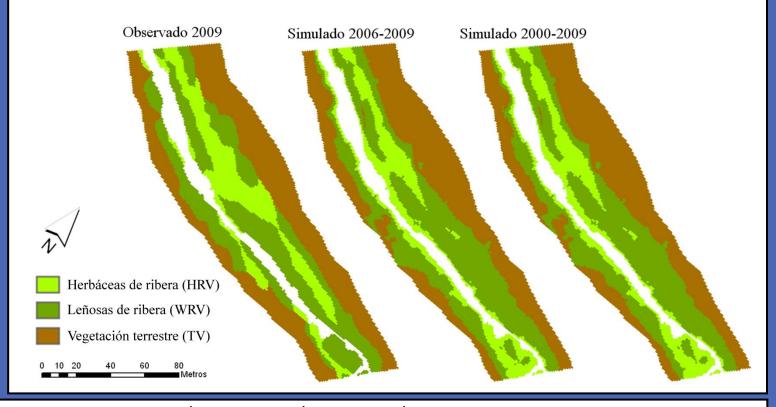
Parámetros de vegetación calibrados


- Parámetros más influyentes:
 - Profundidades de raíces
 - Factores de transpiración

Tipos funcionales de vegetación	D_r	D_e	D_a	r_u	r_s
HRV	0.8	0.6	-0.7	0.5	0.6
WRV	3.2	0.8	-0.3	0.7	0.3
TV	1.9	1.6	1.59	1	0

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Resultados


Modelo RibAV

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Resultados

- $CCI_{06-09} = 0.701, k_{06-09} = 0.528$
- $CCI_{00-09} = 0.700, \ k_{00-09} = 0.527$

Tesis Doctoral: DESARROLLO DE UN MODELO ECOHIDROLÓGICO PARA EL ANÁLISIS DE LA DINÁMICA DE ECOSISTEMAS RIPARIOS

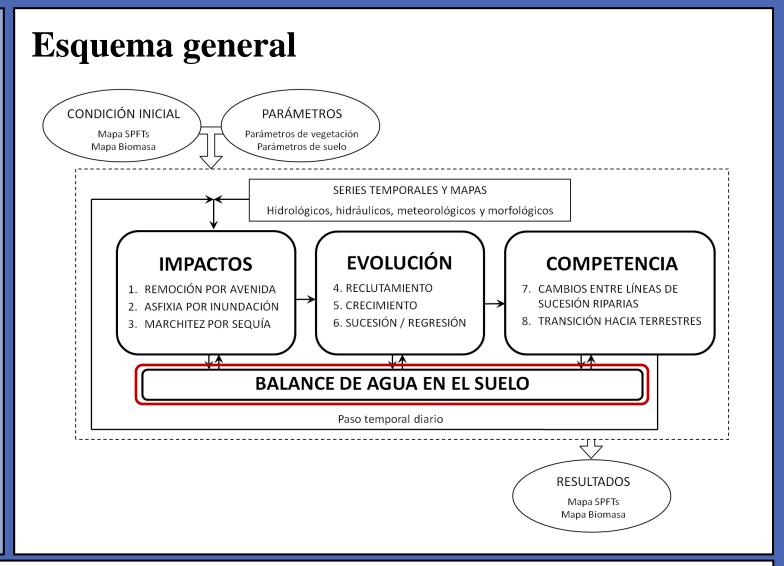
- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia

6. El modelo RVDM

- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Riparian Vegetation Dynamic Model (RVDM)

- Modelo dinámico
- Resolución temporal → diaria
- ▶ Distribuido en pequeñas celdas \rightarrow 0.5 2 m
- Variables de estado:
 - SPFTs
 - Biomasa foliar
- Implementación sencilla (inputs tradicionales)
- > Estructura **modular** (impactos, evolución y competencia)


Modelo RVDM

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- **5. Modelos de referencia**

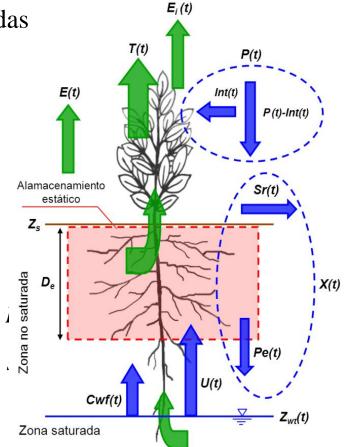
6. El modelo RVDM

- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Tesis Doctoral: DESARROLLO DE UN MODELO ECOHIDROLÓGICO PARA EL ANÁLISIS DE LA DINÁMICA DE ECOSISTEMAS RIPARIOS

Alumna: Alicia García Arias

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia

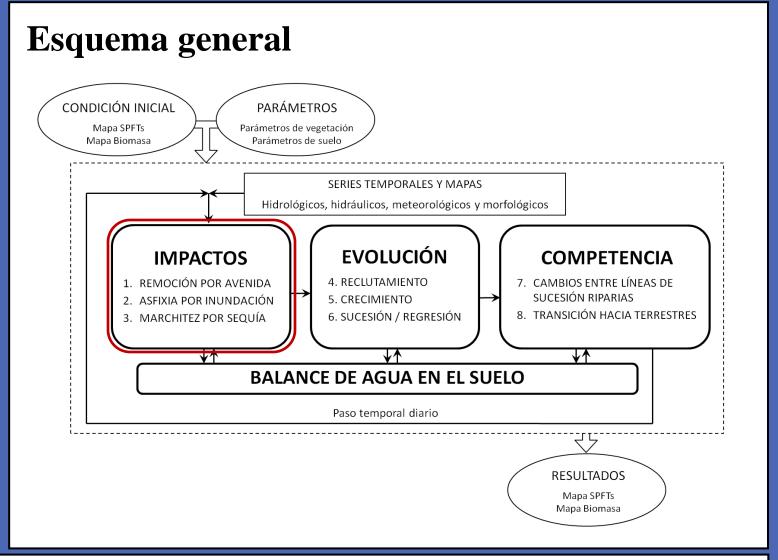

6. El modelo RVDM

- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Módulo de balance de agua en el suelo

- Ecuaciones de RibAV modificadas
- $E_i(t) + T(t) + E(t) \le ET_0(t)$
- ► Int(t) = I_{SSC} Cv (Int(t-1) E_i (t-1))
- $T(t) = T_{u}(t) + T_{s}(t)$
- $E(t) = [ET_0(t) E_i(t)](1 Cv) \beta(H)$

$$\beta(H) = \begin{vmatrix} 1 \\ I(t) + H(t-1) - T_u(t) - H_{wp} \\ H * -H_{wp} \\ 0 \end{vmatrix}$$


Modelo RVDM

Índice

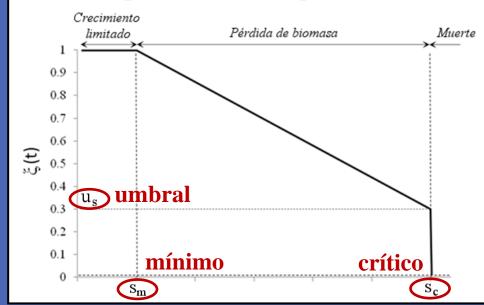
- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia

6. El modelo RVDM

- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Tesis Doctoral: DESARROLLO DE UN MODELO ECOHIDROLÓGICO PARA EL ANÁLISIS DE LA DINÁMICA DE ECOSISTEMAS RIPARIOS

Alumna: Alicia García Arias


- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia

6. El modelo RVDM

- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Módulo de impactos → Efectos de los extremos hidrológicos sobre la vegetación

- **Biomasa resistente** \rightarrow B(t) = B(t-1) \cdot ξ (t) (funciones lineales de pérdida de biomasa)
- Parámetros: valores mínimos y críticos de la variable de estrés
 (s) para definir el impacto

$$\xi(t) = -a s(t) + b$$

$$a = \frac{u_s - 1}{s_m - s_c}$$

$$b = 1 + a s_m$$

Modelo RVDM

Índice

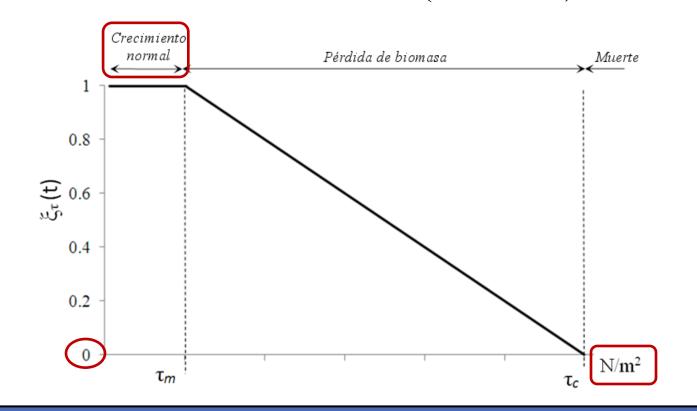
- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia

6. El modelo RVDM

- 7. Análisis de escenarios de <u>cambio</u> global
- 8. Conclusiones

Módulo de impactos → Efectos de los extremos hidrológicos sobre la vegetación

- **Biomasa resistente** \rightarrow B(t) = B(t-1) \cdot ξ (t) (funciones lineares de pérdida de biomasa)
- Parámetros: valores mínimos y críticos de la variable de estrés
 (s) para definir el impacto
- Variable de estrés:
 - Remoción por avenida \rightarrow **tensión tangencial** (τ)
 - Asfixia por inundación → **elevación del nivel freático**
 - Marchitamiento por sequía → disponibilidad hídrica


- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia

6. El modelo RVDM

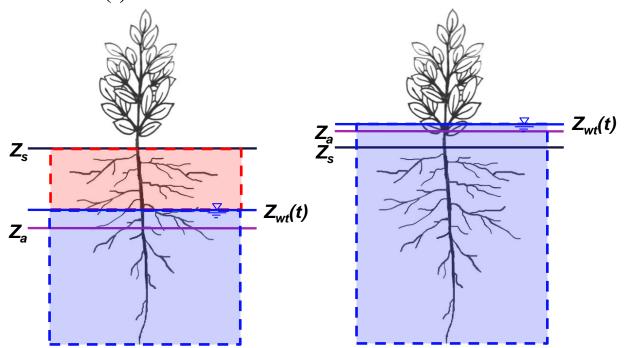
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Remoción por avenida

Tensión tangencial: $\tau(t) = \tau_{j-1} + \left(\frac{Q_i(t) - Q_{i j-1}}{Q_{i j} - Q_{i j-1}}\right) \cdot \P_j - \tau_{j-1}$

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia

6. El modelo **RVDM**

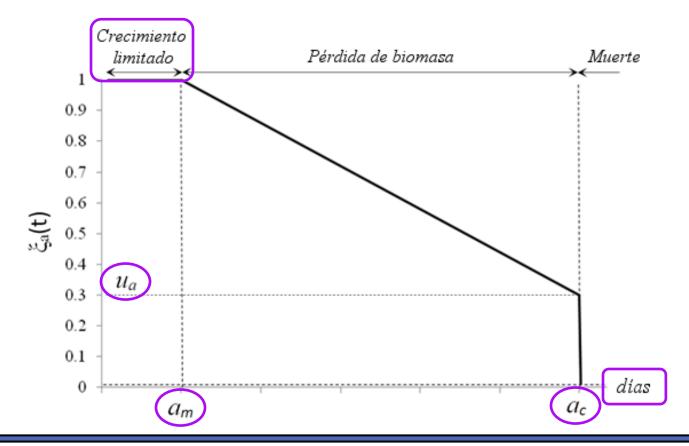

- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Asfixia por inundación

- Variable de estrés: número de días consecutivos que Z_{wt} > Z_a

Elevación del NF
$$Z_{wt}(t) = Z_{wt j-1} + \left(\frac{Q(t) - Q_{j-1}}{Q_j - Q_{j-1}}\right) \cdot \mathcal{Q}_{wt j} - Z_{wt j-1}$$

 $\mathbf{T}(\mathbf{t}) = \mathbf{0}$


- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia

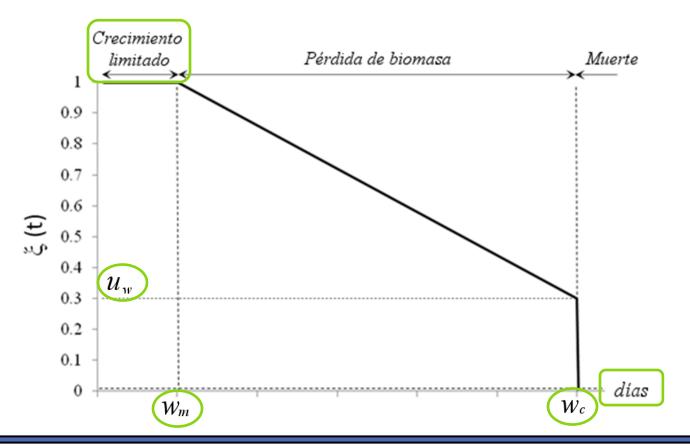
6. El modelo RVDM

- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Asfixia por inundación

Variable de estrés: número de días consecutivos que T(t) = 0

Tesis Doctoral: DESARROLLO DE UN MODELO ECOHIDROLÓGICO PARA EL ANÁLISIS DE LA DINÁMICA DE ECOSISTEMAS RIPARIOS


- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia

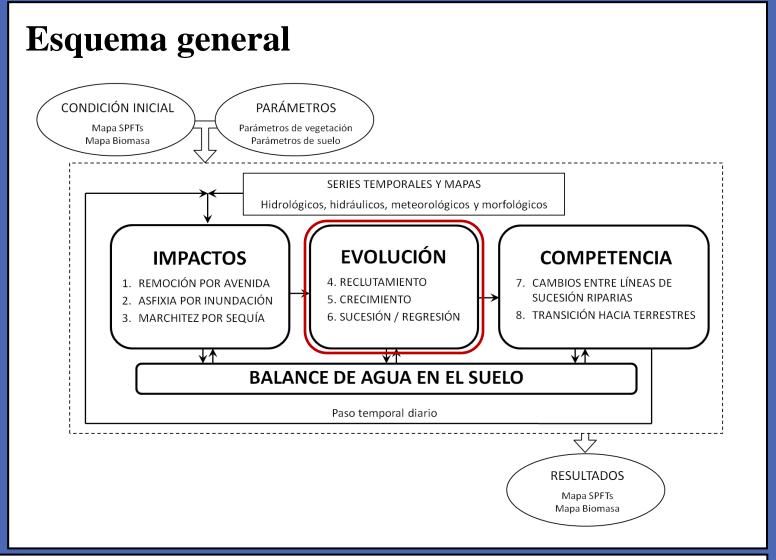
6. El modelo RVDM

- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Marchitez por sequía

Variable de estrés: número de días consecutivos que T(t) = 0

Tesis Doctoral: DESARROLLO DE UN MODELO ECOHIDROLÓGICO PARA EL ANÁLISIS DE LA DINÁMICA DE ECOSISTEMAS RIPARIOS


Modelo RVDM

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia

6. El modelo RVDM

- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Tesis Doctoral: DESARROLLO DE UN MODELO ECOHIDROLÓGICO PARA EL ANÁLISIS DE LA DINÁMICA DE ECOSISTEMAS RIPARIOS

Alumna: Alicia García Arias

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia

6. El modelo RVDM

- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Reclutamiento

- \rightarrow **Presencia** de semillas viables: **BS** \rightarrow **PSC**
 - f(estacionalidad, avenidas)
- ightharpoonup Germinación de esas semillas: $PSC \rightarrow P$
 - f(temperatura, oxígeno, humedad, luz)
- ► Establecimiento de los propágulos: P → H
 - f(transpiración, maduración)

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia

6. El modelo RVDM

- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Crecimiento

$$\frac{dB}{dt} = \left[LUE \cdot APAR(t) \cdot ET_{idx}(t) - Re(t) \right] \varphi_{xl}(t-1) - k_a \cdot B(t-1)$$

$$APAR(t) = 0.95 \left(-e^{-l_e LAI(t-1)}\right) PAR(t)$$
 $LAI(t) = SLA B(t) cv$

Componente logística

$$\varphi_l(t) = 1 - \frac{LAI(t)}{LAI_{max}}$$

Disponibilidad hídrica

$$ET_{idx}(t) = \frac{T(t)}{cv ET_0(t) - E_i(t)}$$

Re
$$(t) = \left(\frac{rr B(t-1) 2.2}{29}\right) \cdot e^{308.56 \left[\left(\frac{1}{56.02} - \frac{1}{T_{med} + 46.02}\right)\right]}$$

Módulo de evolución

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia

6. El modelo RVDM

- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Sucesión - Regresión entre SPFTs

- > Afecta a cada línea de sucesión independientemente
- Cada SPFT tiene asociado un periodo vital y una B_{min}
- Regresión a BS: excedencia de Age_{max} sin alcanzar B_{min} del siguiente SPFT

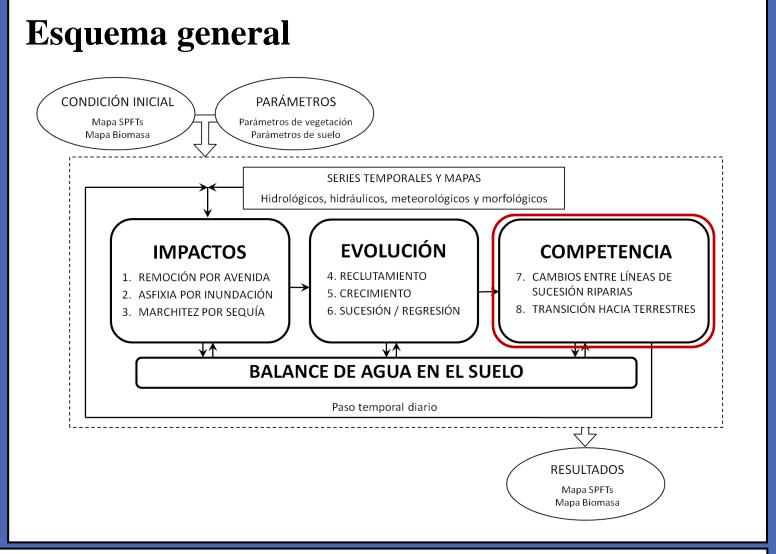
- PARÁMETROS

SUCESIÓN

B_{min} biomasa mínima **Age**_s mínimo nº de días

REGRESIÓN

Age_{max} máximo nº de días


Modelo RVDM

Índice

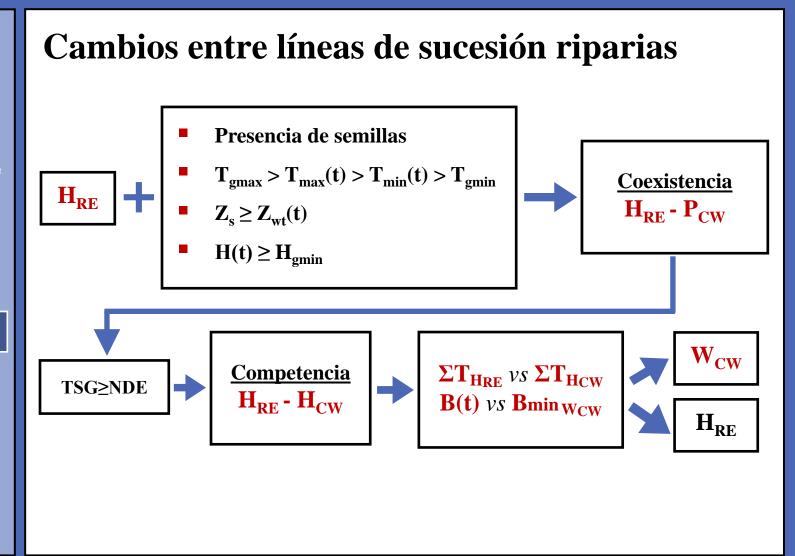
- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia

6. El modelo RVDM

- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Tesis Doctoral: DESARROLLO DE UN MODELO ECOHIDROLÓGICO PARA EL ANÁLISIS DE LA DINÁMICA DE ECOSISTEMAS RIPARIOS

Alumna: Alicia García Arias


Módulo de competencia

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia

6. El modelo RVDM

- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Módulo de competencia

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia

6. El modelo RVDM

- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Transición hacia terrestres

 \triangleright En celdas $\mathbf{W}_{\mathbf{CW}}$ o $\mathbf{W}_{\mathbf{MV}}$:

$$t_{W_{CW}} > Age_t \longrightarrow \Sigma ET_{idx W_{CW}} VS \Sigma ET_{idx W_{MV}} \longrightarrow W_{MV}$$

 \triangleright En celdas $\mathbf{W}_{\mathbf{MV}}$:

$$t_{\text{WMV}} > t_{min}TV \longrightarrow \boxed{\Sigma \text{ET}_{\text{idx WMV}} \text{ vs } \Sigma \text{ET}_{\text{idx WTV}}} \longrightarrow \boxed{W_{\text{TV}}}$$

- No se analiza la competencia en celdas terrestres
 - Las perturbaciones hidrológicas mantienen la dinámica riparia

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia

6. El modelo RVDM

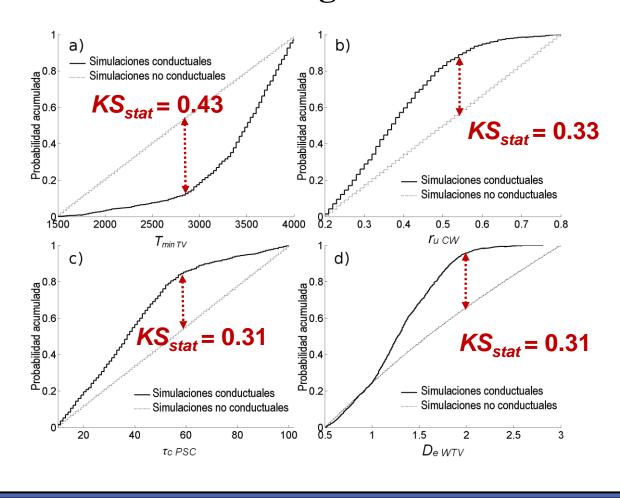
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Análisis de sensibilidad global

- > **250.000** (+15.000) simulaciones **Monte Carlo**
 - Distribución **uniforme**
- Sets de parámetros conductuales / no conductuales
 - Umbrales CCI y $k \approx 0.4$
- ➤ Test de **Kolmogorov**—**Smirnov** para ≠ entre distribuciones de probabilidad acumulada

Rango efectivo e Importancia relativa de cada parámetro

Implementación


Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia

6. El modelo RVDM

- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Análisis de sensibilidad global (Hornberger y Spear, 1980)

Alumna: Alicia García Arias

Implementación

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia

6. El modelo RVDM

- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

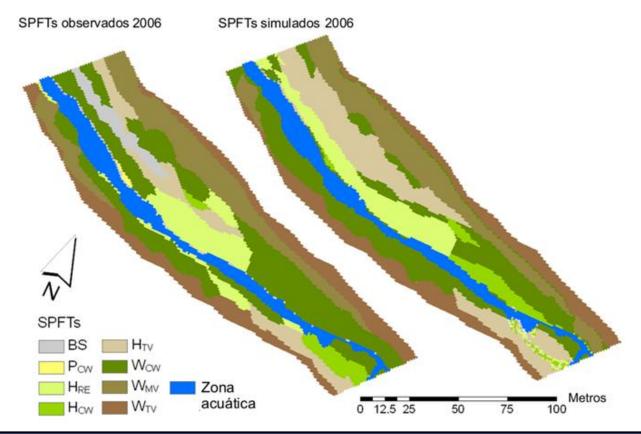
Parámetros más influyentes

- $T_{minTV} = 3600 \, \text{días}$
- $H_{gmin} = 13 \text{ mm}$
- $D_{bse} = 0.31 \text{ m}$

SPFT	P _{RE}	P _{CW}	P _{TV}	$\mathbf{H}_{\mathbf{RE}}$	H_{CW}	H_{TV}	$\mathbf{W}_{\mathbf{CW}}$	W_{MV}	$\overline{\mathbf{W}_{\mathbf{TV}}}$
$B_{min}(g)$	-	-	-	250	2450	800	8500	-	6700
<i>Cv</i> ()	0.8	0.34	0.56	1	0.95	0.76	1	0.88	0.76
D_a (m)	0.04	0.03	0.05	-0.45	-0.09	0.04	-1.33	-0.3	0.74
D_e (m)	0.07	0.1	0.06	0.6	0.47	0.05	0.39	0.57	0.75
$D_r(\mathbf{m})$	0.11	0.12	0.11	0.61	1.56	0.11	7.96	6.09	4.22
$r_s()$	0.97	0.72	0	0.97	0.72	0	0.72	0.36	0
$r_{u}()$	0.14	0.26	1	0.14	0.26	1	0.26	0.63	1
τ_c (N m ⁻²)	107	138	71	220	250	75	441	441	258

Implementación

Índice

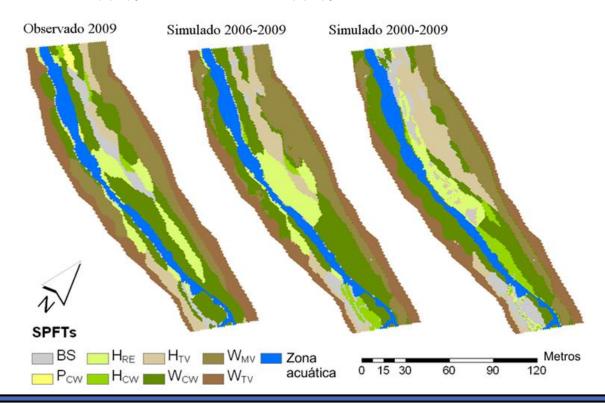

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia

6. El modelo RVDM

- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Resultados: Calibración

$$CCI_{00-06} = 0.670, k_{00-06} = 0.589$$

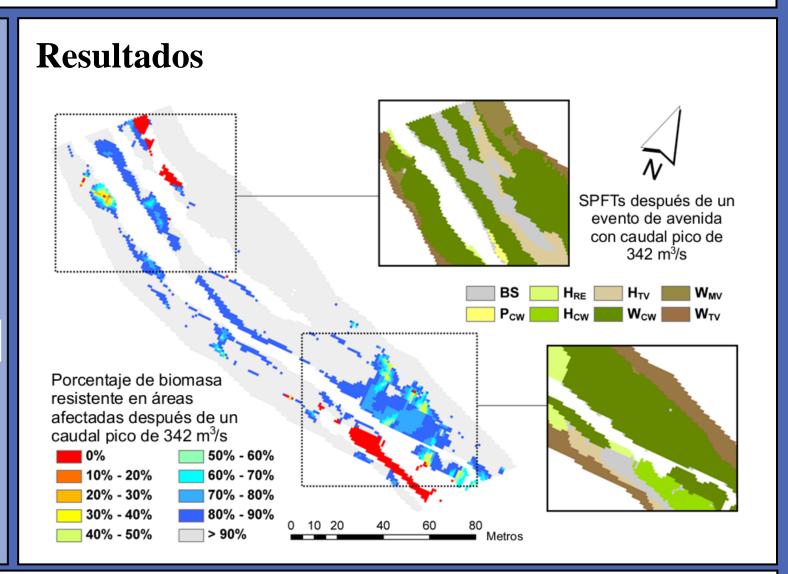

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia

6. El modelo RVDM

- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Resultados: Validación

- $CCI_{06-09} = 0.639, k_{06-09} = 0.545$
- $CCI_{00-09} = 0.501, \ k_{00-09} = 0.383$


Implementación

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia

6. El modelo RVDM

- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Alumna: Alicia García Arias

Comparación con MR

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia

6. El modelo RVDM

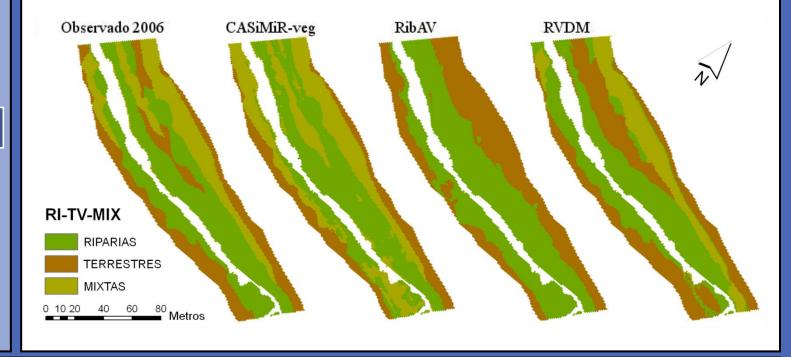
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

RVDM predice mejor y es más robusto

Periodo: 2000-2006					
Clasificación vegetal	F. O. CASiMiR-veg		RibAV	RVDM	
Modelo	CCI	0.378	0.541	0.670	
	\boldsymbol{k}	0.321	0.301	0.589	
Fases	CCI	0.673	0.742	0.764	
	\boldsymbol{k}	0.356	0.297	0.479	
Lineas	CCI	0.652	0.464	0.715	
	\boldsymbol{k}	0.502	0.248	0.601	
RI-TV-MIX	CCI	0.764	0.622	0.795	
	\boldsymbol{k}	0.635	0.372	0.679	

Alumna: Alicia García Arias

Comparación con MR

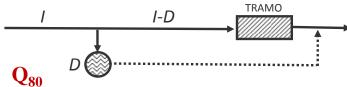

Índice

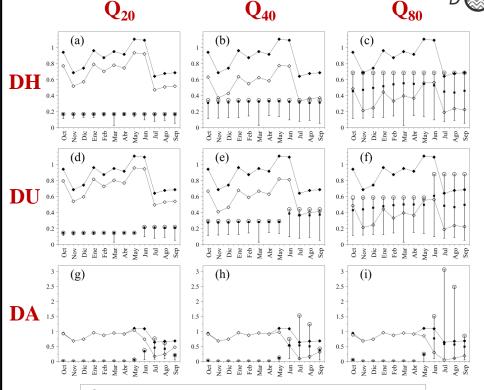
- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia

6. El modelo RVDM

- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Periodo: 2000-2006					
Clasificación vegetal	F.O.	CASiMiR-veg	RibAV	RVDM	
RI-TV-MIX	CCI	0.764	0.622	0.795	
	\boldsymbol{k}	0.635	0.372	0.679	


Tesis Doctoral: DESARROLLO DE UN MODELO ECOHIDROLÓGICO PARA EL ANÁLISIS DE LA DINÁMICA DE ECOSISTEMAS RIPARIOS


Alumna: Alicia García Arias

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Detracción de caudales

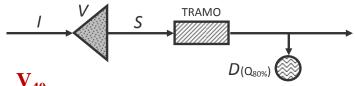
Demanda aguas arriba

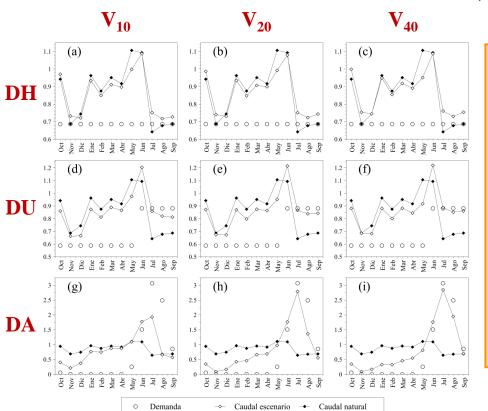
ESTACIONALIDAD DE LA DEMANDA

- hidroeléctrica (constante)
- urbana (+50% Jun.- Sep.)
- agrícola (variable mes a mes; maíz)

CAUDAL DE DEMANDA

• Q₂₀, Q₄₀ y Q₈₀


Escenarios


Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- **5. Modelos de referencia**
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Regulación de caudales

> Demanda aguas abajo

ESTACIONALIDAD DE LA DEMANDA

- hidroeléctrica (constante)
- urbana (+50% Jun.- Sep.)
- agrícola (variable mes a mes; maíz)

CAUDAL DE DEMANDA

• Q₈₀

VOLUMEN DE EMBALSE

• $V_{10}\%$, $V_{20}\%$ y $V_{40}\%$

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

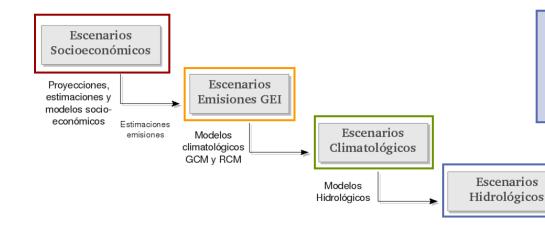
Cambio climático

Variaciones hidro-meteorológicas mensuales

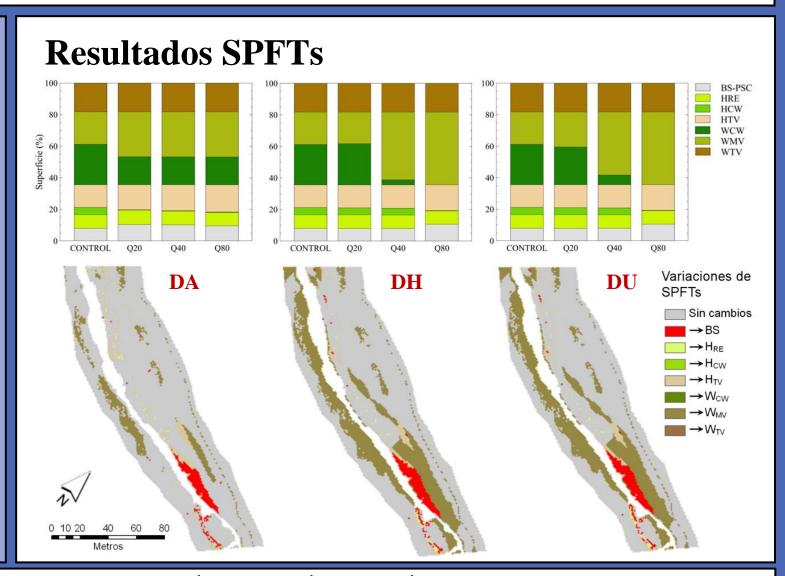
Políticas económicas basadas en:

- Globalización (transporte) vs Regionalización (desarrollo local sostenible)
- Tecnologías tradicionales vs Tecnologías medioambientales

Escenarios GEI:


- A2
- B2

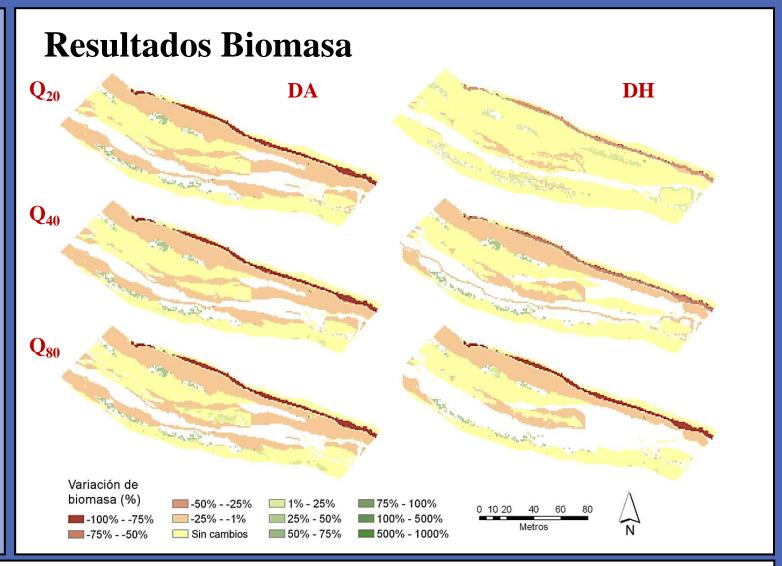
MCGOA:


- HadCM3
- Regionalización:
 - PROMES

Obtenidos para la CHJ con el modelo PATRICAL

(Hernández, 2007)

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones


Tesis Doctoral: DESARROLLO DE UN MODELO ECOHIDROLÓGICO PARA EL ANÁLISIS DE LA DINÁMICA DE ECOSISTEMAS RIPARIOS

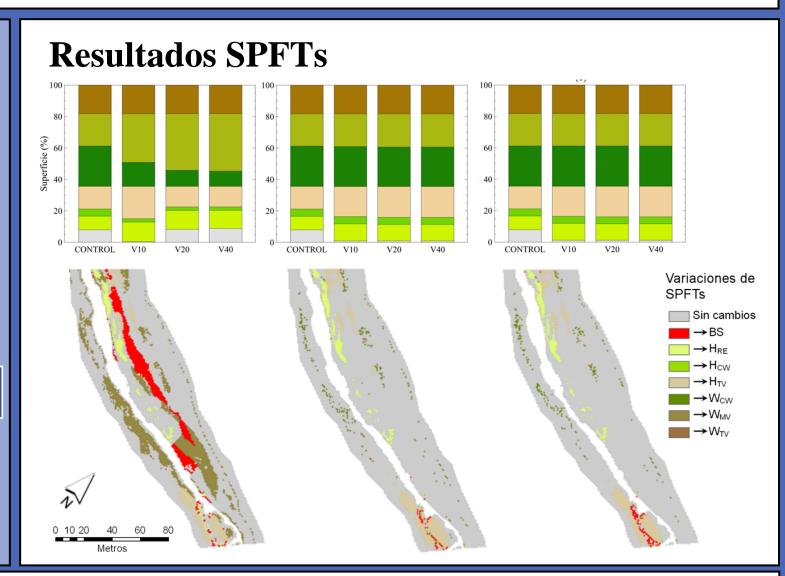
Alumna: Alicia García Arias

Detracción

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Tesis Doctoral: DESARROLLO DE UN MODELO ECOHIDROLÓGICO PARA EL ANÁLISIS DE LA DINÁMICA DE ECOSISTEMAS RIPARIOS

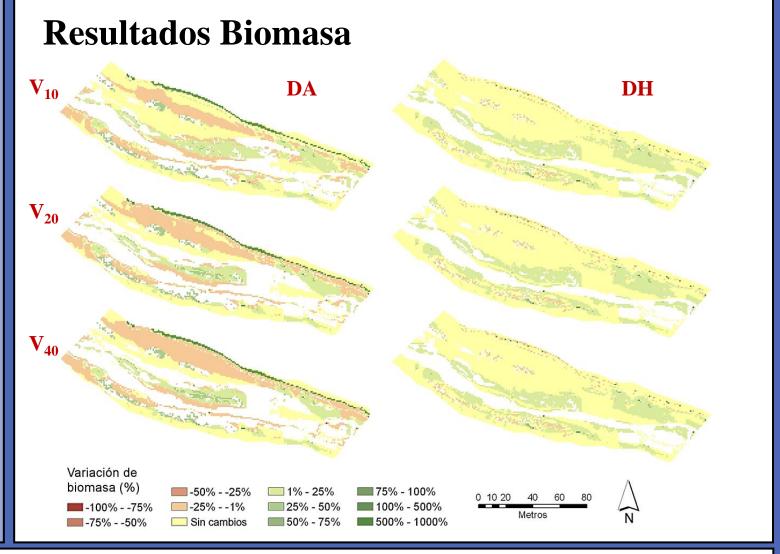

Alumna: Alicia García Arias Director: Félix Francés García

70

Regulación

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

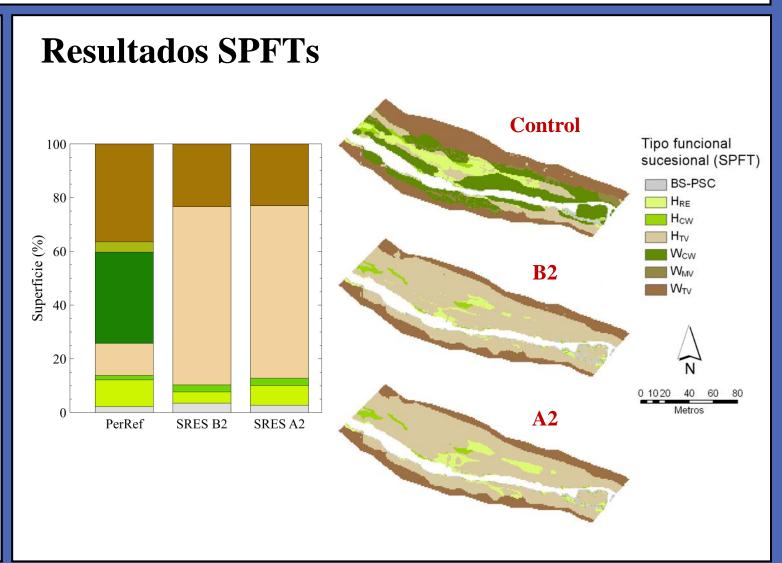

Tesis Doctoral: DESARROLLO DE UN MODELO ECOHIDROLÓGICO PARA EL ANÁLISIS DE LA DINÁMICA DE ECOSISTEMAS RIPARIOS

Alumna: Alicia García Arias

Regulación

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones


Tesis Doctoral: DESARROLLO DE UN MODELO ECOHIDROLÓGICO PARA EL ANÁLISIS DE LA DINÁMICA DE ECOSISTEMAS RIPARIOS

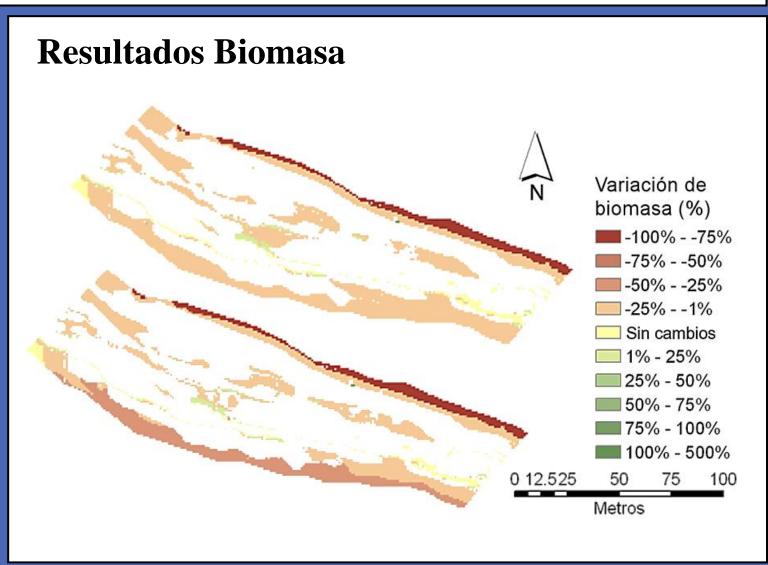
Alumna: Alicia García Arias

Cambio Climático

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Tesis Doctoral: DESARROLLO DE UN MODELO ECOHIDROLÓGICO PARA EL ANÁLISIS DE LA DINÁMICA DE ECOSISTEMAS RIPARIOS


Alumna: Alicia García Arias

Director: Félix Francés García

Cambio Climático

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Conclusiones

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

√

Objetivo 1: Revisión e implementación de modelos preexistentes de referencia

- Se han seleccionado los mejores modelos de referencia en base a criterios objetivos
- La **conceptualización** de los modelos de referencia incluye la modelización de **procesos fundamentales** para la dinámica de la vegetación en las riberas
 - > Aunque los modelos se complementan no se completan
- Los modelos se han calibrado y validado ofreciendo resultados satisfactorios en condiciones mediterráneas semiáridas
- Se han asimilado las principales ventajas e identificado las principales limitaciones de cada uno de los modelos

Conclusiones

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Objetivo 2: Desarrollo de un nuevo modelo útil para la toma de decisiones en gestión hidrológica

- RVDM representa mejor los procesos fundamentales → análisis en áreas específicas o en variables ecohidrológicas concretas
- Su implementación es sencilla (**inputs tradicionales**) → permite análisis sistemáticos para interpretaciones científico-técnicas
- Utiliza una resolución temporal fina (paso temporal diario) →
 útil para analizar periodos temporales o eventos concretos
- Incluye un **nuevo enfoque de clasificación vegetal** (SPFTs) → útil tanto para investigación como para gestión ecohidrológica
- Aporta una variable de estado complementaria útil (biomasa)
 → diferencias entre parches con igual tipo de vegetacion
- La morfodinámica del río puede ser además fácilmente incluida en la implementación → diferentes mapas de suelo y MEDs

Conclusiones

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Objetivo 3: Implementación del modelo para comprobar que mejora los resultados

- RVDM reproduce la distribución y la dinámica de las comunidades vegetales riparias de entornos mediterráneos semiáridos
- Mejora la **calidad** y la **fiabilidad** de los resultados de modelos de referencia y proporciona resultados **excelentes** y **robustos** en **diferentes condiciones hidrológicas**
- Permite la identificación de áreas sensibles frente a impactos hidrológicos (mapas complementarios de biomasa)

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

- > Objetivo 4: Análisis de escenarios que demuestre que el modelo es sensible a los cambios asociados y que los resultados son representativos
 - RVDM identifica variaciones potenciales aun con cambios hidro-meteorológicos pequeños
 - Es útil para la identificación de áreas críticas
 - Permite demostrar que la estacionalidad y magnitud de demanda y el tipo vegetal presente en la celda marcan la dirección y grado de impacto
 - ✓ Detracción → desfavorecimiento de riparias y descenso de biomasa (serie boscosa)
 - ✓ Regulación → avance del bosque terrestre e incremento de biomasa (demandas agrícolas)

Conclusiones

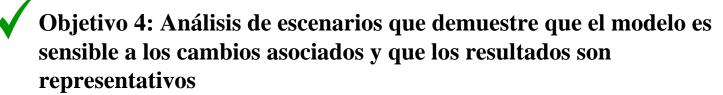
Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

Cambio Climático

Agentes de cambio

- Incremento de T^a
- Cambios en régimen de P
- Reducción de caudales
- > Cambios en valores extremos
- Etc.


Impactos y Vulnerabilidades

- Reducción de áreas riparias
- Incremento de áreas no vegetadas
- Mayor presencia de terrestres
- ⇒ Reducción de biomasa vegetal
- ⇒ Cambios graduales en el ecosistema ripario

Conclusiones

Índice

- 1. Introducción
- 2. Objetivos
- 3. Información de partida
- 4. Criterios comunes de implementación
- 5. Modelos de referencia
- 6. El modelo RVDM
- 7. Análisis de escenarios de cambio global
- 8. Conclusiones

- Identifica variaciones potenciales aun con cambios hidrometeorológicos pequeños
- Útil para la identificación de áreas críticas
- Permite demostrar que la estacionalidad y magnitud de demanda y el tipo vegetal presente en la celda marcan la dirección y grado de impacto
- Permite demostrar que el **régimen de caudales** es un motor de cambio pero no es el único (otras **variables ambientales**)

Líneas Futuras de Investigación

Líneas Futuras de Investigación

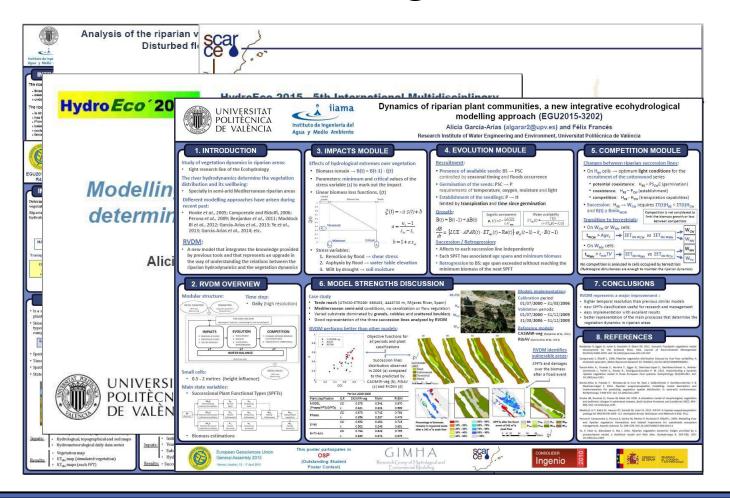
Difusión de resultados

Líneas futuras

- Interfaz gráfica (en realización)
- Interconexiones río-vegetación

Modelo **DINÁMICO** de <u>vegetación</u> riparia (RVDM)

Modelo **DINÁMICO** de hidráulica y morfología del cauce y las bandas riparias


- Diferentes funciones de reducción de biomasa
- > Tasa de descenso (lineal o variable) del nivel freático
- Clasificaciones vegetales más eficientes
- Inclusión de un sistema de evaluación del estado ecológico del ecosistema ripario

Difusión de resultados

Líneas Futuras de Investigación

Difusión de resultados

Contribuciones en 15 congresos

Tesis Doctoral: DESARROLLO DE UN MODELO ECOHIDROLÓGICO PARA EL ANÁLISIS DE LA DINÁMICA DE ECOSISTEMAS RIPARIOS

Alumna: Alicia García Arias Director: Félix Francés García

Difusión de resultados

Líneas Futuras de Investigación

Difusión de resultados

Artículos en revistas científicas

García-Arias A, Francés F, Ferreira MT, Egger G, Martínez-Capel F, Garófano-Gómez V, Andrés-Doménech I, Politti E, Rivaes R, Rodríguez-González PM. 2013.

Implementing a dynamic riparian vegetation model in three European river systems. *Ecohydrology* 6(4):635-651. DOI: 10.1002/eco.1331

García-Arias A, Francés F, Morales-de la Cruz M, Real J, Vallés-Morán F, Martínez-Capel F, Garófano-Gómez V. 2014. Riparian evapotranspiration modelling: model description and implementation for predicting vegetation spatial distribution in semi-arid environments. *Ecohydrology* 7:659-677. DOI: 10.1002/eco.1387

Rivaes R, Rodríguez-González PM, Ferreira MT, Pinheiro AN, Politti E, Egger G, García-Arias A, Francés F. 2014. Modeling the evolution of riparian woodlands facing climate change in three European rivers with contrasting flow regimes. *PLoS ONE* 9(10):e110200, DOI: 10.1371/journal.pone.0110200.

García-Arias A, Francés F. 2015. The RVDM model: modelling impacts, evolution and competition to determine riparian vegetation dynamics. *Ecohydrology*. DOI: 10.1002/eco.1648

DESARROLLO DE UN MODELO ECOHIDROLÓGICO PARA EL ANÁLISIS DE LA DINÁMICA DE ECOSISTEMAS RIPARIOS

Alicia García Arias (algarar2@upv.es)