
Soil heterogeneity is relevant for hydrological processes modelling and 

distributed hydrological models take into account that issue by an 

explicit representation of spatial variability. Parametric and mechanistic 

models are characterized by de problem that its parameter’s values 

depend on the scale at which they are calibrated. Going downwards in 

model development we need to know what level of complexity is 

sufficient to represent the main behavior of our hydrological systems.   

 

We present a formulation to parameterize subgrid heterogeneities of soil 

hydraulic parameters and its incorporation within TETIS hydrological 

model. The parameterization approach was tested in a small 

experimental watershed and compared with TETIS parameterization 

without subgrid representation by using aggregated parameters at  a 

coarser support. The representation of subgrid heterogeneities improved 

model performance in spatial-temporal validation.  

 

 

 

This work present the development of scaling equations 

to transfer the effect of subgrid spatial heterogeneities 

of soil parameters within a hydrological model. The 

implementation of hose equations in TETIS model 

demonstrated its potential to improve the representation 

of the hydrological processes within the catchment. 

 

The main advantage of taking into account sub-grid 

heterogeneity is that we can obtain a more robust 

calibrated hydrological model than using stationary 

effective parameters. The robustness is improved in the 

sense of better performance of runoff simulations at 

locations don’t used to hydrological model. calibration 

 

Nevertheless, the stationary effective parameters have 

shown a good representation of watershed properties for 

runoff modeling and its results are close to sub-grid 

results in high magnitude events. 

  

The  results of validation by continuous simulation 

confirms the utility of subgrid equations to represent the 

Hydrology of Goodwin Creek. But it is needed to 

contrast this hypothesis in other catchments to state a 

stronger analysis based on the study of a wide range of 

hydrologic conditions.  
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Figure 1. Scheme of TETIS Hydrological model (Francés et. al, 2007) 
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MODEL CALIBRATION 

 

Calibration procedure was carried out for a rainfall-runoff event 

(19-09-1983). The SCE-UA optimization algorithm was used to 

maximize Nash-Sutcleffe Eficiency at the outlet gauge station. 

Three calibrations were performed: 1. parameter values resolution 

of 30x30 (Support 1), 2. parameter values resolution of 

1732x1732 (Support 2) and 3. the coarser parameter resolution 

with subgrid equations (Support 2 + subgrid). 

 

Each calibration was applied with a spatial resolution of 30x30 

m2 and temporal discretization of 5 minutes. 

1. The spatial-temporal validations 

indicate an important difference 

in model performance when 

comparing the three approaches 

(Figure 6). There is a consistent 

improvement of model 

performance when is considered 

the sub-grid heterogeneity by 

non-stationary effective 

parameters.  

 

 

2. Validation  by continuous 

simulation: The validation for 

an entire year (1984) confirms 

the better performance of the 

hydrological model by using 

equations taking into account 

subgrid heterogeneities. The 

worst performance was founded 

neglecting subgrid variability 

and using the coarser spatial 

resolution of parameters.  

Figure 5. Parameter fields used to test the utility of subgrid representation. Top: 30x30 m2 spatial resolution (Support 1). 

Down: 1732x1732 m2  of spatial resolution (Support 2) . 

Figure 6. Comparison of NSE in spatial-temporal validation for all 

approaches. 

Based on the assumption of Beta distribution of soil static storage 

capacity (Hu) and Lognormal distribution of saturated hydraulic 

conductivities ks and kp at point scale (S1) we calculated derived 

distribution functions of flow variables at point scale. We propose the 

inversion of the Equations (1 and 2) to calculate non-stationary effective 

parameters at cell scale (S2). This technique lets us to calculate Hu[S2] 

when X2[S2] is larger than zero (Equation 3), that assumption preserves 

mass balance. The inversion of Equation 2 lets us to state that the 

parameter ks[S2] is equal to X3[S2], and a similar procedure was carried 

out to calculate effective parameters of kp. The resulting equations are 

expressed in an integral form and the validity of those equations was 

tested by Monte Carlo simulations on a single cell containing N subcells. 

 

 

 

 

 

Verification by Monte Carlo simulations: 

Calculation of kpEF,t has a similar structure to equations [7], [8] and [9].   
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Inverse Formulation: 

Semi-empirical equations of non-stationary effective parameters: 
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VALIDATION 

Figure 3. Scatter plots showing the validity of non-stationary 

effective parameters equations. 

Figure 7. Comparison of NSE in 

spatial-temporal validation for 

continuous simulation (year  

1984). 

realizations 10000

a 2

b 2

Λ 20

mean k s 5

variance k s 100

mean k p 6

variance k p 144

dt 1/6 hours

H1 initial 0.2*Hu

alpha k s 0.0996

apha k p 0.104

mu 2.306

sigma 5.82E-04

We formulated semi-empirical equations of non-stationary effective 

parameters because of the analytical ones must be solved by numerical 

integration and their solution would require the use of many 

computational resources to be applied in a real case study.  

Figure 2. Non-stationary effective parameter as a 

function of input and state variable. 

 

 

 

 

 

Figure 4. Study area. 
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