
Hydrological modeling at watershed scale is highly affected by 
uncertainty as a consequence of simplifications in physical processes 
representation, errors in the measurement of variables, errors in 
parameters estimation and the hardness of initial and boundary 
conditions estimation (Rosbjerg and Madsen 2005; Gourley and Vieux 
2006). It is important for distributed hydrological modeling to assess 
the sources of uncertainty and reduce its influence. 

 

The main aim of this work is to test the importance of representing 
sub-grid heterogeneities of soil parameters within a distributed 
hydrological modeling framework. It was compared the difference of 
taking into account sub-grid spatial heterogeneities effect by means of 
Monte-Carlo simulations, semi-empirical equations with non-stationary 
effective parameters and effective parameters. 

 

 

 

It was used the conceptualization of the hydrological model called 
TETIS, which is a spatially distributed model. Runoff production is 
modeled at each grid cell by means of six conceptual tanks. Fluid 
flowing through tanks represents precipitation, snowmelt, 
evapotranspiration, infiltration, percolation, groundwater outflow, 
overland flow, interflow and base flow (figure 1). A detailed description 
of model's development is presented by Francés et. al. (2007).  

 

 

 

 

Based on that results, we reflect on that sub-grid 
heterogeneity of parameters is an essential subject 
in hydrological modeling. The main advantage of 
taking into account sub-grid heterogeneity is that 
we can obtain a more robust calibrated 
hydrological model than using stationary effective 
parameters. The robustness is improved in the 
sense of better performance of runoff simulations 
for low magnitude rainfall events. 
 
Nevertheless, the stationary effective parameters 
have shown a good representation of watershed 
properties for runoff modeling and its results are 
close to sub-grid results in high magnitude events. 
  
In this work we didn't test model performance in 
terms of simulating the state variables, which is 
relevant to advance the knowledge of sub-grid 
heterogeneities effect in the hydrological model. It 
should be studied in the near future to support the 
above conclusions.  
 
Our study focused on event driven approach, 
which is high sensitive to initial conditions in the 
watershed. To minimize the error by initial 
condition estimation, we consider necessary to 
carry out a similar work by continuous simulation. 

This study was supported by the Programme ALBan, 
the European Union Programme of High Level 
Scholarships for Latin America, scolarship No. 
E07D402940CO, and by the Spanish Ministry of 
Science and Innovation through the project 
Consolider-Ingenio SCARCE (ref: CSD2009-00065). 

Francés, F., Vélez, J.I., Vélez, J.J. (2007) Split-parameter structure for 

the automatic calibration of distributed hydrological models. Journal of 

Hydrology 332: 226-240. 

 

Gourley, J. J. and B. E. Vieux (2006). "A method for identifying 

sources of model uncertainty in rainfall-runoff simulations." Journal of 

Hydrology 327 (1-2): 68-80. 

 

Rosbjerg, D. and H. Madsen (2005). Concepts of hydrologic 

modelling. Encyclopedia of hydrological sciences. M. G. Anderson and 

J. J. McDonnell. Chichester, Reino Unido, John Wiley & Sons: 155-163. 

1. INTRODUCTION 3. METHODS 

2. MODEL DESCRIPTION 

6. CONCLUSIONS 

ACKNOWLEDGEMENTS 

REFERENCES 

Non-stationary effective parameters for distributed hydrological 

modeling 
Miguel Barrios (mibarpe@posgrado.upv.es),  Ismael Orozco (isorme@posgrado.upv.es),  

 Jesús López (jesus_lop79@hotmail.com), Félix Francés (ffrances@hma.upv.es)  

Institute of Water and Environmental Engineering, Technical University of Valencia, Camino de Vera s/n, 46022 Valencia, Spain 

 

[2] 

 

 

 

 

 

Figure 2. Goodwin Creek 
experimental watershed. 

Figure 1. Scheme of the TETIS model (Francés et. al, 2007). 

 

 

 

 

 

We focus our research on sub-grid variability of infiltration and percolation processes. 
The static storage tank represents the upper soil capillary water storage and has a 
threshold corresponding to “Hu”. Precipitation X1 is accumulated into this tank when 

Hu is not reached. We represent the excess water by [1] and capillary infiltration by 
[2]. 

 

Once the static storage tank reaches Hu,  the infiltration capacity has a value near to 
upper soil saturated hydraulic conductivity ks and it is reasonable to express 
gravitational infiltration X3 by [3]. 

 

that total infiltration will be the sum of D1 and X3. The gravitational infiltration could 
join to gravitational storage or go downwards as percolation flow X4. The percolation 
capacity is approximated by the deep soil saturated hydraulic conductivity kp, and X4 

will be calculated similarly to equation 3. 

 

 2 1 1( 0 ; )uX Max X H H   [1] 

1 1 2D X X 

3 2( ; )sX Min X t k  [3] 

 

 

 

 

 

4. CASE STUDY 

App3: Following the assumptions of App2, it was derived 
probability distribution functions analytically for state and flow 
variables. Then we calculate expected value equations for flow 
at grid support. By inverse problem solving were found 
equations for Hu, ks and kp at grid support, which depends on 

input and state variables. (denoted as non-stationary effective 
parameters - equations [4] to [12]). 

App1: Using the parameter values estimated at the support 
of cartographic units and calibrating a correction factor.   

Comparing four approaches to consider parameter’s sub-grid 

heterogeneity in Goodwin Creek experimental watershed: 

App2: By an explicit representation using Monte Carlo 
simulations. Assuming beta distribution of HU [Beta(2,2)], and 
lognormal distribution of ks and kp we generated random fields 

of each parameter at sub-grid support. Flow equations were 
solved at sub-grid support and then aggregated at grid 
support. Calibrating a correction factor related to the expected 
value at grid support.   
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The derivation of kpEF,t has a similar structure to equations [7], [8] and [9].   
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When it is considered the spatial autocorrelation of parameter 
fields is hard to conditioning each random variable on the 
others. Specially dealing with a large number of them. So, we 
found that the non-stationary effective parameters Hu, ks and 
kp can be expressed by:   
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5. RESULTS 

CALIBRATION AND VALIDATION: 
 
Calibration was carried out 
by means of the SCE-UA 
optimization algorithm at 
the outlet gauge station. 
Each approach was applied 
with a spatial resolution of 
30x30 m2 and temporal 
discretization of 5 min. 

Event   Total rainfall (mm) Duration (hours) 

1 Calibration 149.11 35.08 

2 Validation 74.22 14.83 

3 Validation 148.28 60.17 

4 Validation 44.00 30.66 

5 Validation 61.56 25.33 

Table 1. rainfall events 
for calibration and 
validation 

App4: Using the parameter values estimated at grid support 
and calibrating a correction factor. 
 

 

 For random fields of iid random variables: 

 
The spatial-temporal validations indicate an important difference in 

model performance when comparing the four approaches (Figure 

5). There is a tendency to improve the agreement between 

observations and simulations when is considered the sub-grid 

heterogeneity by Monte-Carlo simulations (App 2) and non-

stationary effective parameters (App 3) for low rainfall events.  

Figure 4. Contrast of NSE in 
temporal validation for all 
approaches. 

Figure 3. Comparison of 
Nash-Sutcliffe efficiencies 
(NSE) in calibration (red 
points) and spatial validation 
(black points) for all 
approaches. 

Figure 5. Comparison of NSE 
in spatial-temporal validation 
for all approaches. 


