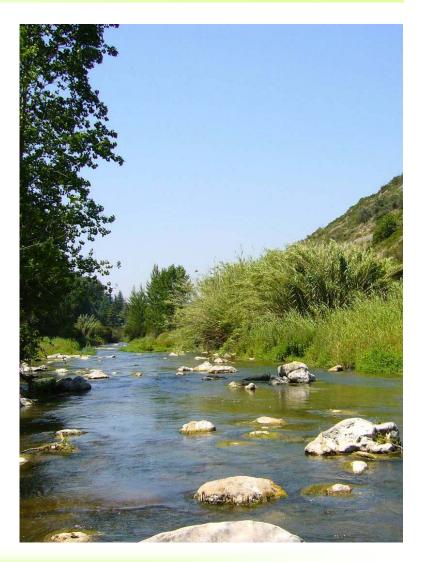


WORKSHOP Summer School: Advances in Ecohydrology Palermo, 2010

Evaluation of direct and indirect anthropic effects over riparian vegetation zonation in several stretches of Mediterranean rivers in Spain

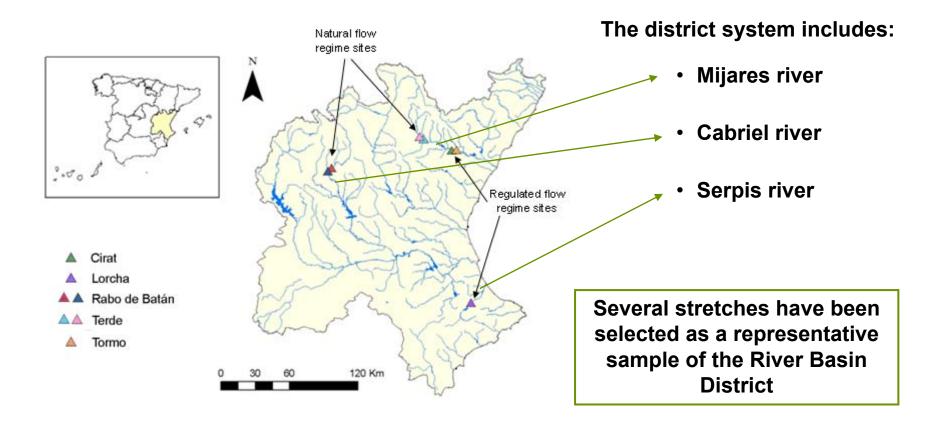
Alicia García Arias (algarar2@posgrado.upv.es) and Félix Francés



WORKSHOP Summer School: Advances in Ecohydrology Palermo, 2010

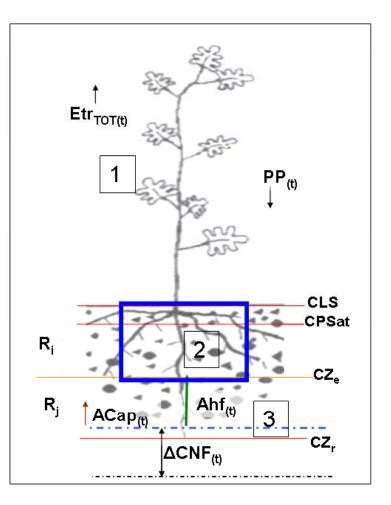
OUTLINE

- 1. Introduction
- 2. RibAV model calibration 2.1. Default vegetation parameters
- 3. RibAV model validation3.1. Validation in natural flow regime3.2. Validation in disturbed flow regime
 - 3.3. Versatility of the model
- 4. Cases of study
 - 4.1. Flow regulation scenarios
- 5. Results
- 6. Conclusions



1. Introduction

The Júcar River Basin District


1. Introduction

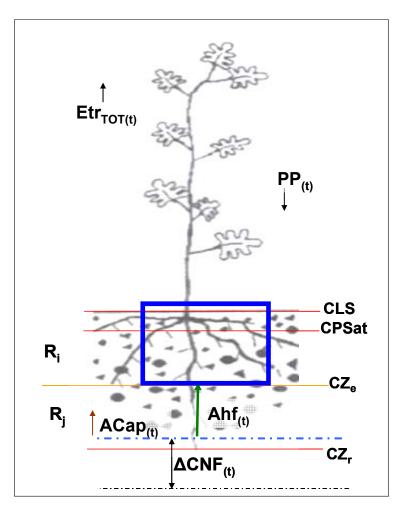
The RibAV model

Elements:

- 1. Vegetation
- 2. Static tank-unsaturated zone
- 3. Saturated zone

Inputs (time series): PP(t): Precipitation ETo(t): Potential ET Q(t): River daily discharges

Morales and Francés, Proceed. Internat. Conf. Sci. Inf. Tech. Sust. Manag. Aq. Ecosyst. 2009



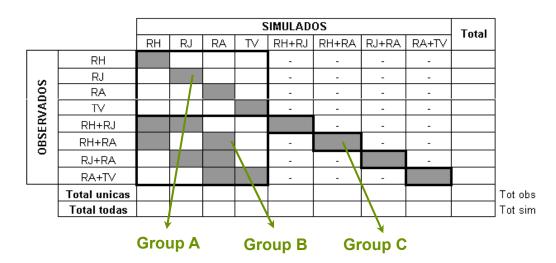
1. Introduction

The RibAV model

Processes:

- → Tank Water Excess (Runoff +percolation)
- \rightarrow Transpiration:
 - Saturated Soil
 - Non saturated Soil
 - Plant drowning (then ET=0)
- → Acap(t): Soil capillary rise
- → Ahf(t):Root hydraulic lift

Morales and Francés, Proceed. Internat. Conf. Sci. Inf. Tech. Sust. Manag. Aq. Ecosyst. 2009


The RibAV model calibration

• The most relevant model parameters are:

- Zr: maximum root depth (m)
- Ze: effective root depth (m)
- Zsat: saturation extinction depth (m)
- Rj: transpiration factor from the saturated zone ()
- Ri: transpiration factor from the unsaturated zone ()

• The model has been calibrated and validated using as objective function a confusion matrix:

The confusion matrix compares the observed and the simulated riparian vegetation zonation

• The Cohen's k test (Cohen, 1960) \rightarrow k, coefficient of agreement for nominal variables

2. Calibration

Calibration in Lorcha

- Stretch: Lorcha (Serpis River)
- All vegetation functional types observed in field
- 431 simulation points
- 36 simulations required

BALANCE	Simulados	Observados	% Aciertos
RH	25	70	35.71%
RJ	2	5	40.00%
RA	17	18	94.44%
ΤV	110	125	88.00%
RH+RJ	8	20	40.00%
RH+RA	12	17	70.59%
RJ+RA	31	84	36.90%
RA+TV	92	92	100.00%

		SIMULATED								
		RH	RJ	RA	TV	RH+RJ	RH+RA	RJ+RA	RA+TV	Total
1	RH	25	3	39	3	<u>.</u>	13#8			70
	RJ	0	2	1	2	2 <u>1</u>	<u> 1955</u> 19	20	-	5
<u>e</u>	RA	0	0	17	1	1	1. 1 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	5: 	3 5	18
OBSERVED	τv	0	0	15	110		2 4 5	-	3 4	125
	RH+RJ	3	5	5	7	8	-	3		20
0	RH+RA	0	1	12	4		12	2 		17
	RJ+RA	2	2	29	51		19 1 10	31		84
	RA+TV	0	0	51	41	1	-	-	92	92
	Total singles	25	5	72	116	8	12	31	92	431
	TOTAL	30	13	169	219					431

Default Vegetation Parameters

		Zr	Ze	Zsat	Ri	Rj	Cov	CRT	Pwp	Pcrit
Parameter		Maximum Root Depth [m]	Effective Root Depth [m]	Extinction at Saturation [m]	Transpiration Factor from Unsaturated Zone []	Transpiration Factor from Saturated Zone []	Vegetation density []	Maximum Soil- Root Water Conductance [mm/Mpa/h]	Wilting Point Matrix Potencial [Kpa]	Critical matrix potential [Kpa]
Riparian Herbs	RH	0.8	0.7	-0.75	0.8	0.6	1	0.97	1500	500
Riparian Juveniles and small Schrubs	RJ	1.25	0.9	-0.1	0.9	0.35	0.8	0.97	1500	500
Riparian adults Trees and Schrubs	RA	3.5	0.9	-0.3	0.9	0.35	1	0.97	1500	250
Terrestrial Vegetation	τν	2	1.9	0.3	1	0	1	0.97	1500	95

 $k = 0.81 \pm 0.10$

0.40 < k < 0.60	ACCEPTABLE
0.60 < k < 0.80	GOOD
0.80 < k < 1.00	EXCELLENT

Validation in natural flow regime

Stratah Divor	Matching case	es percentage	le .	Christiah faatumaa	
Stretch - River	RIPARIAN	TERRESTIAL	ĸ	Stretch features	
Rabo del Batán – Cabriel	93.04 %	20.69 %	0.69 ± 0.13	Forest stretch, natural flow	
Terde – Mijares	89.15 %	70.83 %	0.69 ± 0.13	Forest stretch, natural flow	

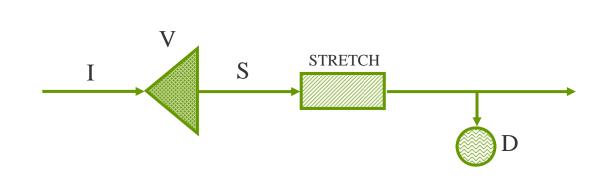
Validation in disturbed flow regime

Stratab Divor	Matching case	es percentage	le le	Otwatak faatuwaa	
Stretch - River	RIPARIAN TERRESTIAL K		ĸ	Stretch features	
Cirat – Mijares	29.41 %	Not observed	0.01 ± 0.40	Agricultural, regulated flow	
Tormo – Mijares	75.67 %	Not observed	0.40 ± 0.45	Forest stretch, regulated flow	

Versatility of the model

- Agricultural influence introduces high uncertainty in flow data
- The number of simulation points must be high to obtain a representative k value
- The k value should be interpreted with caution if there is absence of any vegetation functional types

Stretch - River	Matchi perc	k	
	RIPARIAN	TERRESTIAL	
Combination	86.50 %	56.44 %	0.74 ± 0.07

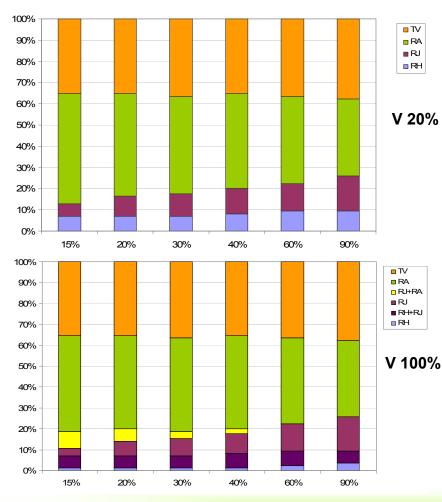


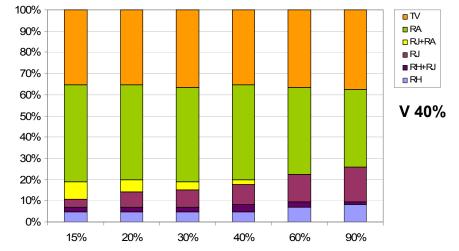
Flow regulation scenarios

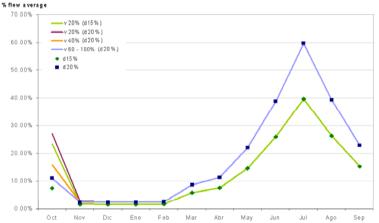
Hydrological data series of Terde were modified in order to obtain several flow regulation scenarios:

Dam regulation by a reservoir 20%, 40%, 60%, 80% and 100% of the annual flow

• Agricultural, urban and hydroelectric demands without consumption

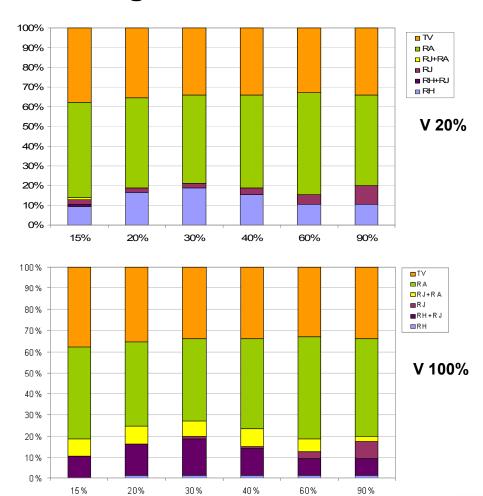

The initial volumes of the dams were established iteratively by the mean volume at that specific day of the year, for each dam capacity and demand scenario

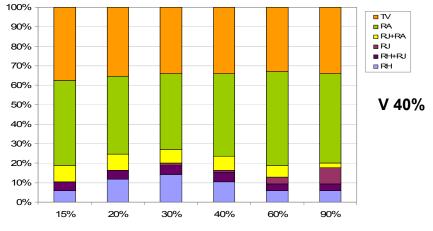


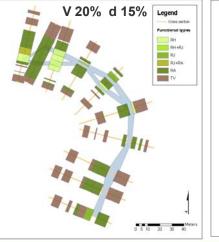


5. Results

Dam regulation + Agricultural demand

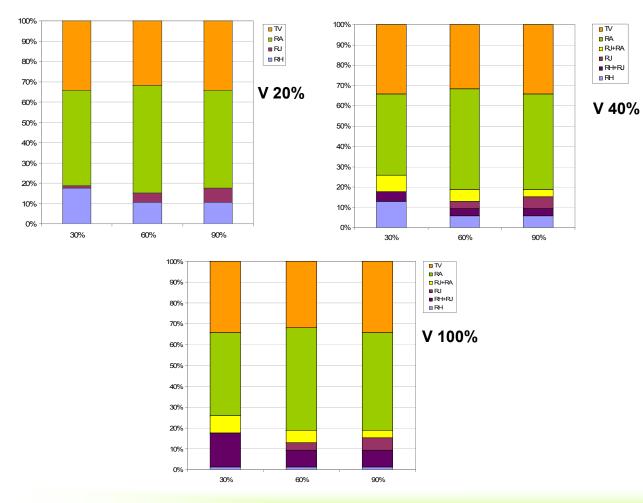


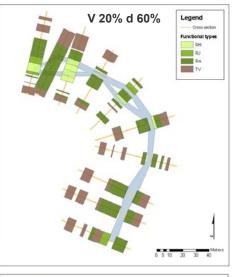




5. Results

Dam regulation + Urban demand





5. Results

Dam regulation + hydroelectric demand

- Changes in Mediterranean semiarid hydrologic systems cause changes in river associated vegetation
- RibAV model is an useful tool for evaluating several anthropic impacts considering changes in hydrological regimes or changes in the climatic conditions
 - But some predictions should be qualified
- Hydrologic regulation by dams (w/o water consumption) is not always unfavorable for riparian plants → more analysis is needed

WORKSHOP Summer School: Advances in Ecohydrology Palermo, 2010

Thank you for your attention

Alicia García Arias (algarar2@posgrado.upv.es)