

Does increased hydrochemical model complexity decrease robustness?

C. Medici, A. J. Wade and F. Francés

INTRODUCTION:

- Integrated understanding of catchment : DIFFICULT!
- Model applications: EXPLORE POSSIBLE EXPLANATIONS for the observed behaviour
- > Equifinality: many equally good fits to data
- Realistic representation of real-world thresholds and non-linearities: COMPLEX MATHEMATICAL MODELS

OBJECTIVE:

To determine if additional model complexity gives better capability to model the hydrology and nitrogen dynamics of a small Mediterranean catchment

STUDY CASE:

Fuirosos catchment

(Catalonia)

- Area: 13 km²
- Forest covers 90% of tot. area
- Lithology:
 - Granodiorite
 - •Leucogranite
 - Schists
 - •Well-developed *riparian zone* at the valley bottom
- Mediterranean climate:
 - •Mean annual Ppt: 750 mm
 - •Mean annual PET: 975 mm
- Intermittent stream

RESEARCH QUESTIONS:

- Are the additional mechanisms/parameters progressively introduced *influential* on the result?
- 2. Does additional model complexity give more acceptable model behaviours or lead to over-parameterisation?
- 3. Which is the *most appropriate* model for the study case considered?

METHODOLOGY:

- General Sensitivity Analysis GSA (Hornberger and Spear, 1980)
- Generalised Likelihood Uncertainty Estimation –
 GLUE (Beven and Binley, 1992)
- Monte Carlo technique: random sampling of 100,000 parameter sets from uniform distribution

METHODOLOGY:

Objective functions:

Nash and Sutcliffe efficiency index (E)

$$E = 1 - \frac{\sum_{1}^{n} (X_{sim} - X_{obs})^{2}}{\sum_{1}^{n} (X_{obs} - \overline{X}_{obs})^{2}}$$

- E_{tot}(Q): 1999–2002
- $E_1(Q):1999-2000$; $E_2(Q):2000-2001$; $E_3(Q):2001-2002$
- $E_{123}(Q) = E_1(Q) + E_2(Q) + E_3(Q)$
- Relative Root Mean Squared Error (RRMSE)

$$RRMSE = \sqrt{\frac{\sum_{1}^{n} (X_{sim} - X_{obs})^{2}}{\sum_{1}^{n} X_{obs}^{2}}}$$

HYDROLOGICAL MODELS:

NITROGEN MODEL:

Mineralisation soil moisture thresholds

Rest of processes soil moisture thresholds

RESULTS: Discharge

LU4-N model

LU4-N-R model

SD4-N-R model

RESULTS: Nitrate

LU4-N model

LU4-N-R model

SD4-N-R model

RESULTS:

RESULTS:

- > 22,639 behavioural runs
- > 72% observed data included

- > 14,283 behavioural runs
- > 45% observed data included

- > 15,784 behavioural runs
- > 76% observed data included

- > 8,301 behavioural runs
- > 58% observed data included

1999-2002 **GLUE** bands

- > 2,805 behavioural runs
- > 75% observed data included

- > 3,084 behavioural runs
- > 64% observed data included

> 1000 behavioural runs*

> 59% observed data included

- > 1534 behavioural runs
- > 68% observed data included

- > 3000 behavioural runs
- > 61% observed data included

CONCLUSIONS:

- The importance of the riparian zone in controlling the short-term daily streamwater nitrogen dynamics, but it exerts a very limited influence on daily discharge
- The sensitivity ranking of the hydrological parameters changed when considering different objective functions.
- The multi-objective approach led to more robust parameter sets as showed by the 5 and 95% GLUE bands obtained

CONCLUSIONS:

- The most complex structure → the most appropriate
 - HYDROLOGY: increased model complexity can lead to over-parameterisation since only an inputoutput response is simulated
 - WATER QUALITY: increased model complexity allows greater process representation which can lead to greater explanatory power of a model

CONCLUSIONS:

- Further work is required to find out which is the optimum level of complexity before there is a deterioration in the model robustness
- More details about this work can be found in Medici et al., (2012), J. Hydrol.
- chme1@doctor.upv.es

Thank you for your attention!

RESULTS

Sensitivity ranking for the ten most influential parameters based on the Kolmogorov-Smirnov two-sample test showed in brackets

Hydrological models

	LU4-N model		LU4-R-N model		SD4-R-N model	
	$E_{tot}(Q) \geqslant 0.77$	$E_{123}^*(Q) \geqslant 1.5$	$E_{tot}(Q) \geqslant 0.77$	$E_{123}^*(\mathbb{Q}) \geqslant 1.5$	$E_{tot}(Q) \geqslant 0.77$	$E_{123}^*(Q) \geqslant 1.5$
1	$H_u^*(0.729)$	$H_u^*(0.537)$	$H_{u,hill}^*$ (0.736)	$H_{u,hill}^{*}(0.497)$	$H_{u_Leuco}^*(0.547)$	$H_{u_Leuco}^{*}$ (0.538)
2	$K_{\rm s}$ (0.270)	$H_m(0.372)$	H_m (0.324)	$H_m(0.419)$	H_{m_Leuco} (0.432)	$H_{u_Schst}^*$ (0.338)
3	H_m (0.215)	K_{pp} (0.151)	K_{s_hill} (0.187)	K_{p_hill} (0.299)	K_{s_Schst} (0.295)	K_{s_Leuco} (0.241)
4	K_p (0.067)	T3 (0.059)	K_{p_hill} (0.140)	K_{s_hill} (0.209)	$K_{s_Leuco}(0.273)$	H_{m_Schst} (0.193)
5	T2 (0.056)	T2 (0.036)	T2 (0.129)	T2 (0.162)	K_{pp_Leuco} (0.231)	$T2_{Leuco}$ (0.148)
6	T3 (0.047)	$K_p(0.029)$	K_{pp} (0.050)	K_{pp} (0.056)	$H_{u_Granod}^*$ (0.230)	$H_{u_Leuco}^{*}$ (0.130)
7		K_s (0.024)	T3 (0.049)	T3 (0.037)	K_{p_Leuco} (0.204)	K_{pp_Leuco} (0.125)
8					$T2_{Leuco}$ (0.122)	K_{p_Leuco} (0.118)
9					H_{m_Schst} (0.121)	K_{s_Schst} (0.118)
10					K_{pp_Schst} (0.116)	$H_{u_Granod}^*$ (0.117)

Nitrogen models

	LU4-N model	LU4-R-N model	SD4-R-N model
	$\begin{array}{l} \text{RRMSE}(\text{NO}_3) \leqslant 0.8 \\ \text{RRMSE}(\text{NH}_4) \leqslant 1.4 \end{array}$	$\begin{array}{l} \text{RRMSE}(\text{NO}_3) \leqslant 0.6 \\ \text{RRMSE}(\text{NH}_4) \leqslant 1.2 \end{array}$	$\begin{array}{l} \text{RRMSE}(\text{NO}_3) \leqslant 0.6 \\ \text{RRMSE}(\text{NH}_4) \leqslant 1.2 \end{array}$
1	K_{nitr_acuif} (0.390)	$H_{u_hill}^*$ (0.365)	K _{min_hill} (0.526)
2	K_{min} (0.298)	K_{min_hill} (0.323)	$K_{denitr_acuif_ripz}$ (0.248)
3	H_u^* (0.295)	$MaxUPNH_4$ (0.317)	U_{immob_ripz} (0.198)
4	$MaxUPNH_4$ (0.278)	$K_{nitr_acuif_hill}$ (0.216)	$K_{nitr_acuif_hill}$ (0.108)
5	U_{min} (0.227)	$K_{denitr_acuif_ripz}$ (0.196)	U_{denitr_hill} (0.099)
6	H_m (0.227)	H_{m_hill} (0.180)	K _{denitr_acuif_hill} (0.083)
7	U_{nitr} (0.199)	K _{denitr_acuif_hill} (0.157)	$H_{u-schst}^*$ (0.050)
8	U_{immob} (0.227)	U_{imm_hill} (0.127)	U_{min_ripz} (0.076)
9	$K_p(0.121)$	U_{min_hill} (0.119)	$K_{nitr_acuif_ripz}$ (0.069)
10	K_{ads} (0.106)	U_{nitr_hill} (0.088)	H_{m_schst} (0.068)