

Hydrological and sediment model calibration at ungauged basins using check dam stratigraphy as proxy data in a Mediterranean catchment

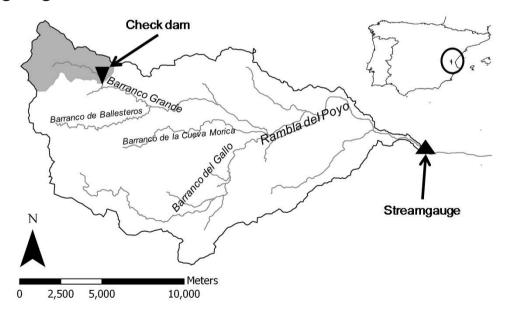
G. Bussi and F. Francés

Research Institute of Water and Environmental Engineering, Universitat Politècnica de València, Spain

Introduction

- Problem: hydrological modelling in Mediterranean semiarid zones is limited by data availability:
 - Good data availability: rainfall, temperature, land use, ...
 - Scarce data: water & sediment discharge, soil properties, ...
- Aim of the work: calibration and validation of a hydrological model in a semi-arid catchment without discharge data.
 - 1 simplifying the model by making realistic hypothesis;
 - 2 using proxy data: **check dam sedimentation volume**;
 - 3 using multidisciplinary techniques:
 - stratigraphical analysis
 - hydrological modelling
 - reservoir sedimentation modelling

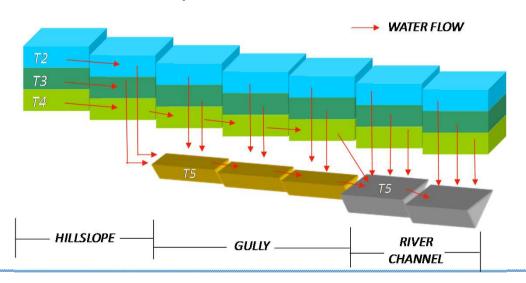
Introduction

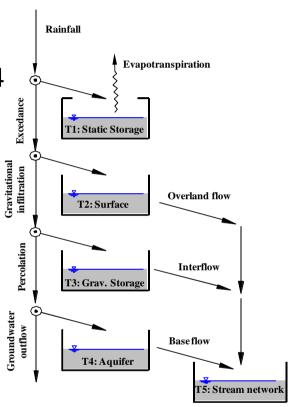

■ Methodology:

- 1 Reconstruction of the **depositional record** of a check dam infill deposit by means of a stratigraphical description;
- 2 Calibration and validation of a hydrological and sediment model using the reconstructed depositional record;
- 3 **Verification** of the model performance by comparing simulated and observed water discharge at the streamgauge station;
- 4 Sensitivity analysis (Monte Carlo simulation).

Study area

- □ Rambla del Poyo catchment (Valencia, SE Spain)
 - Semi-arid climate (rainfall = 450 mm/year; ET0 = 1,100 mm/year)
 - Geology dominated by limestone
 - Shrubland cover (matorral)
 - Studied catchment: 12.9 km²
 - Streamgauge catchment: 184 km²

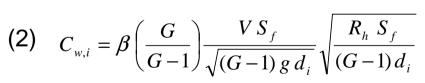


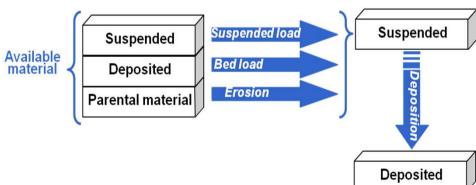

The model

□ TETIS model: hydrological sub-model

> Developed in the TU of Valencia since 1994

- Distributed and conceptual (tank structure) model, with physically based parameters
- Reproduction of hydrological cycle spatial variability
- > It uses all spatial information available



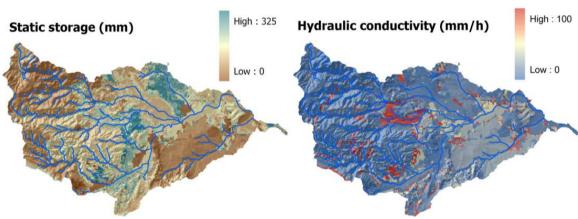

The model

□ TETIS model: sediment sub-model

- Integration of CASC2D-SED (Julien and Rojas, 2002) in TETIS
- Balance between water transport capacity and sediment availability
- Hillslope transport capacity: modified Kilinc Richardson (1) equation (Julien, 1995)
- Gully and channel transport: Engelund Hansen equation (2)

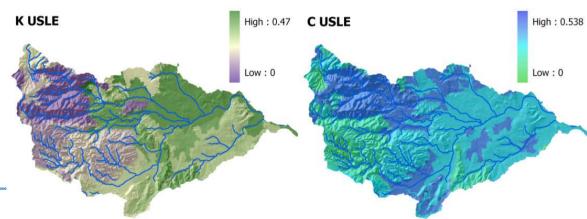
(1)
$$Q_h = \frac{1}{\gamma_s} W \alpha S_o^{1.66} \left(\frac{Q}{W}\right)^{2.035} \frac{K}{0.15} C P$$

 Reservoir sedimentation: STEP model (Verstraeten and Poesen, 2001)



The model parameters

■ Model parameters:


Soil hydrological properties (static storage, hydraulic

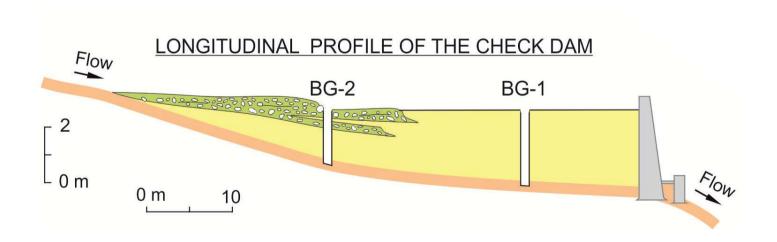
conductivity, ...); Static storage (mm)

■ Sediment production properties (C, K and P factor of USLE and soil texture).

Bushes **C USLE** **C USLE** ** High: 0.47 ** C USLE** ** USLE** ** High: 0.47 ** C USLE** ** USLE**

Sediment proxy data

□ Check dam infill volume

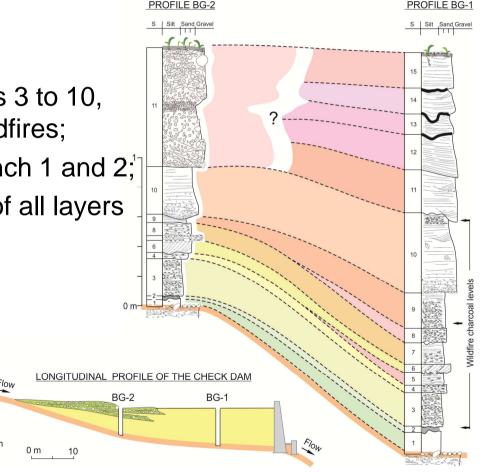

- Many small check dams (2 10 m tall) were built in Spanish Mediterranean during 90s as sediment traps;
- A partially filled check dam was chosen:
 - Height: 4.5 m;
 - Catchment: 12.9 km²;
 - Capacity: 3000 m³;
 - Total infill ~ 1400 m³.

Sediment proxy data

- GPS survey for infill volume estimation
- □ Two 10 x 2.5 m trenches dug across the dam infill
- Detailed stratigraphic panels with 1 m mesh
 - detection of alluvial layers deposited by different floods (the separation is defined by a break in deposition)

Infill volume estimation

Stratigraphical description


2.5 m sediment column;

15 layers (flood units);

rests of charcoal in layers 3 to 10, due to 1994 and 2000 wildfires;

8 layers found in both trench 1 and 2;

 granulometrical analysis of all layers (sandy sediments);

G. Bussi et al., 2013 HESS Discussion

Infill volume estimation

□ Two methodologies:

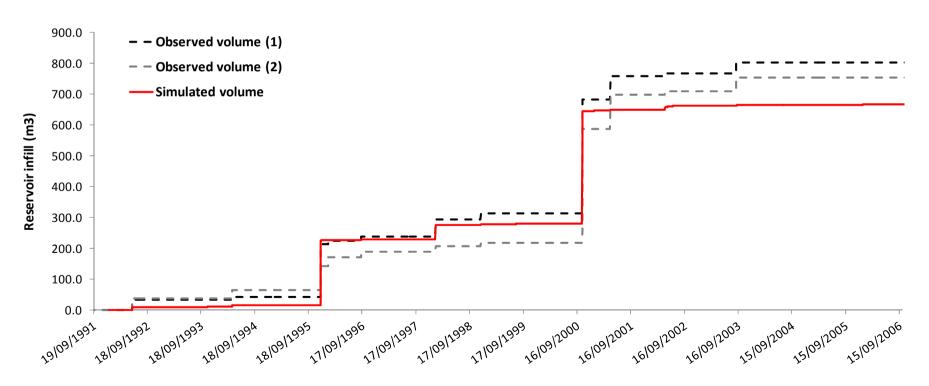
- 1 **wedge approach**: every layer volume was calculated as if each flood unit had a wedge shape.
- 2 **proportional approach**: by subtracting to the actual deposits the average layer depth.

Flood unit	Volume i)	Volume ii)
	(m³)	(m³)
1	34	38
2	8	28
3	172	<i>78</i>
4	10	27
5	14	18
6	55	18
7	22	11
8	20	41
9	195	96
10	153	233
11	<i>7</i> 5	110
12	8	11
13	<i>37</i>	46
14	30	23
15	18	22
surface	582	448
tot	1434	1248

- □ The model need to be simplified
- □ Some hypothesis(confirmed by field observations):
 - Hortonian flow
 - Very little interflow
 - No base flow
- □ Parameters to calibrate (5 most influential parameters):
 - Upper soil static storage
 - Upper soil vertical hydraulic conductivity
 - Upper soil horizontal hydraulic conductivity
 - Routing correction coefficient
 - α: Kilinc Richardson sediment production coefficient

□ Dating:

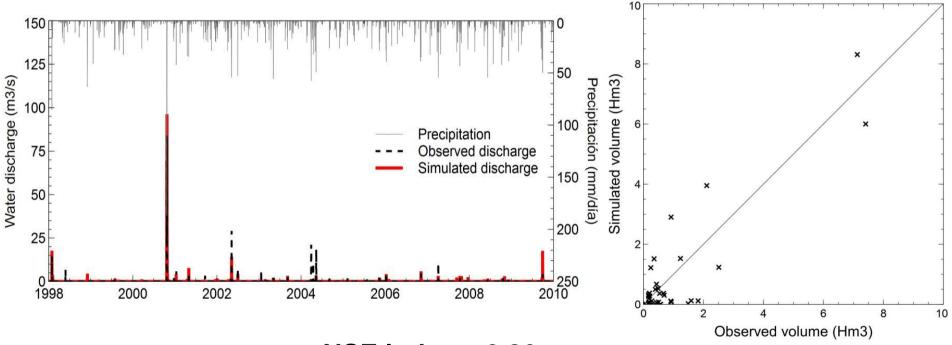
- Using charcoal and knowing wildfires dates (1994 and 2000);
- Model results help dating;


Calibration

- The model is calibrated simulating the reservoir observed deposited volume of the October 2000 event (the most extreme event in the historical series) with a daily △t;
- The October 2000 deposited layer is formed by flood units 8 + 9 +10:
- Deposited volume is ~ 370 m³;

□ **Sediment** model validation

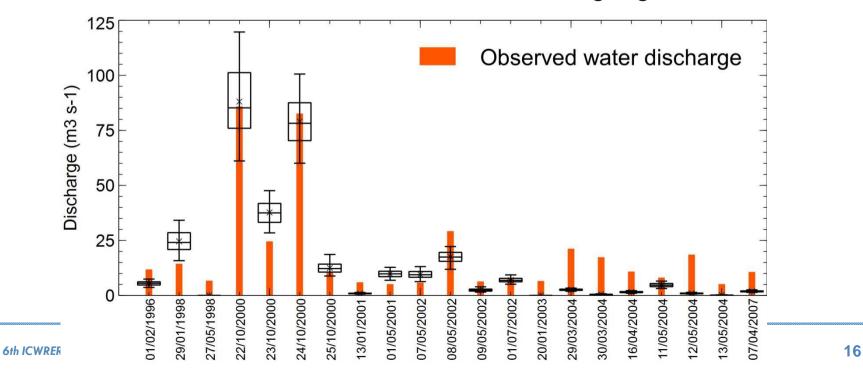
- The model is validated *vs* observed reservoir infill volume (reconstructed from stratigraphical description) 12.9 km²
- Feedback process: model results help dating sediment layers



■ Water discharge validation

■ The model is validated vs water discharge from the Rambla del Poyo streamgauge (184 km²)

NSE index = 0.86



Sensitivity analysis

■ Monte Carlo simulation

- 50,000 simulations with random values of the 4 most influent parameters;
- The best 100 simulations in terms of total infill **volume error** at the check dam are tested at the stream gauge in terms of **NSE**.

Conclusions

- Sediment proxy data help constrain water cycle model calibration (transfer of information from sediment cycle to water cycle);
- Multidisciplinarity: coupling hydrological modelling and palaeohydrological techniques for improving catchment knowledge;
- □ Small data requirement: rainfall and temperature, soil data, land use and partially filled check dams;
- □ Generalization: this technique can be used in almost all Mediterranean small and medium size catchment

Thanks for your attention!

Gianbattista Bussi (gbussi@upvnet.upv.es)

Research Group of Hydrological and Environmental Modelling **lluvia.dihma.upv.es**

Acknowledgements:

SCARCE (CSD2009-00065) and INTEGRA (CGL2011-28776-C02-01) Projects
The study was funded by the Spanish Ministry of Economy and Competitiveness

