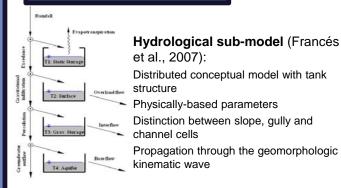
Full implementation of a distributed hydrological model based on check dam trapped sediment volumes

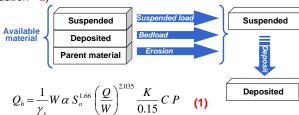
Gianbattista Bussi^(1,2) (gianbattista.bussi@ouce.ox.ac.uk) and Félix Francés (ffrances@upv.es) ⁽¹⁾

(1) Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain (2) School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, UK

1 - INTRODUCTION


Aim of the study: calibrating a sediment model in an ungauged catchment (no water and sediment records).

Source of proxy data: sediment volumes trapped behind check dams.


Methodology:

- 1 model conceptualization is simplified based on field observations;
- 2 the model is calibrated based on the total **volume** trapped behind a **check** dam;
- 3 a **spatial validation** is carried out by assessing model results at other 7 check
- 4 a temporal validation is carried out by comparing the model results with a stratigraphical description of a deposit.
- 5 the model is further validated by comparing its results with a series of observed discharges

2 - TETIS MODEL

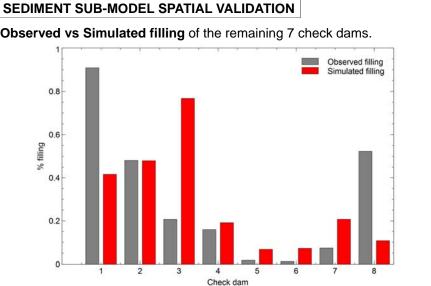
Sediment sub-model (Bussi et al., 2013, 2014): slope erosion processes (modified Kilinc – Richardson equation - 1) and gully and channel erosion processes (Engelund - Hansen equation - 2)

$$C_{w,i} = \beta \left(\frac{G}{G-1}\right) \frac{V S_f}{\sqrt{(G-1) g d_i}} \sqrt{\frac{R_h S_f}{(G-1) d_i}}$$
 (2)

4 - RESULTS

MODEL SIMPLIFICATION AND CALIBRATION

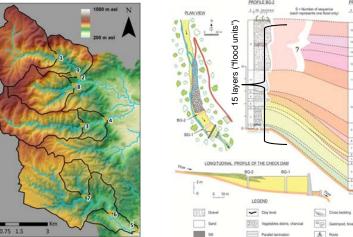
Some hypothesis (confirmed by field observations):

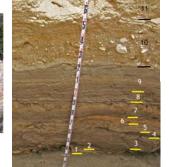

- · Hortonian flow
- · Very little interflow
- · No base flow

Parameters to calibrate (5 most influential parameters):

- Maximum soil static storage
- · Infiltration capacity at saturation
- Interflow velocity
- Channel flow velocity
- · Maximum transport capacity for hillslopes

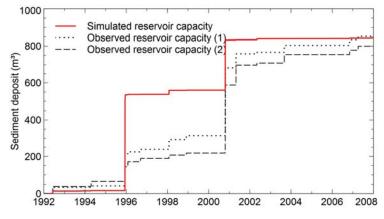
Calibration: reproduction of the total sediment volume accumulated behind check dam 2

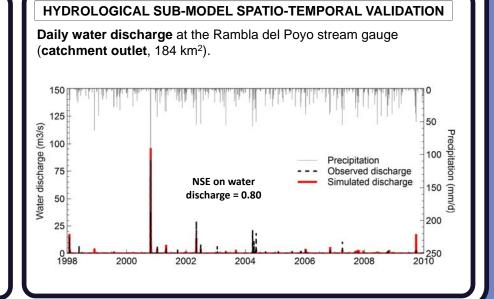



3 - CASE STUDY

Study area: Rambla del Poyo catchment, 30 km west of Valencia (Spain), 184 km2, 1 raingauge, 1 streamgauge ($\Delta t = daily$), 8 check dams

Dam	Sub-catchment	Maximum	Sedimentation	Sedimentation	Dry bulk	Drainage	BOTTON OF			100A753
		storage	volume	rate	density	area	535,3546			and the
		m³	m³	%	tons/m3	km²	- Control			
1	B. Grande	1,200	1,100	91%	1.245	9.1		A Comment		
2	B. Grande	3,000	1,400	48%	1.195	12.9		1		CITA
3	B. de Ballesteros	1,800	600	36%	1.245	8.0		Section 2	A STATE OF THE PARTY OF THE PAR	A CONTRACTOR
4	B. de Ballesteros	4,400	700	16%	1.197	10.1	EU 131	Control of the last		E2053
5	B. del Gallo	10,800	190	2%	1.206	16.6	2000	the land	经验的	100
6	B. del Gallo	23,700	290	1%	1.190	15.0	N. Carlon	Contraction of the last		
7	B. del Gallo	1,600	120	7%	1.206	2.3	2 4 1 1	AND DESCRIPTIONS	PARKSONAL STATE	MIRINGS
8	B. Grande	6,000	3,100	52%	1.251	5.4	_			
						St	ratigraphica	al profile of	check dam 2 de	posit
								PROFILE BG-2		PROFIL
			15	1500 m asl N		PLANX	NEW	1 to Section	S = Number of sequence (each represents one flood only)	-110-1
	20	3				0 10	its")			1.


Stratigraphical description of a depositional sequence in a 3.5 m trench made across the check dam 2 sediment deposit,


identifying all flood units; the separation between flood units is indicated by a break in deposition (Bussi et al., 2013).

15 flood units (layers) were identified. Each one corresponds to a flood event occurred between the dam construction (early '90) and

SEDIMENT SUB-MODEL TEMPORAL VALIDATION

Reservoir capacity evolution (1990-2012) of check dam 2 (the observed evolution was reconstructed through the stratigraphical analysis).

5 - CONCLUSIONS

- 1 Sediment proxy data help constrain water cycle model calibration (transfer of information from sediment cycle to water cycle);
- 2 Multidisciplinarity: coupling hydrological modelling and palaeohydrological techniques for improving catchment knowledge;
- 3 Small data requirement: rainfall and temperature, soil data, land use and partially filled check dams;
- 4 Generalization: this technique can be used in almost all Mediterranean small and medium size catchments.

Acknowledgements

This study was funded by the Spanish Ministry of Economy and Competitiveness through the projects FLOOD-MED (CGL2008-06474-C02-02/BTE). SCARCE-CONSOLIDER (CSD2009-00065) and ECO-TETIS (CGL2011-28776-C02-01). Also thanks to the SAIH of CHJ and AEMET for providing hydrometeorological data.

References

- G Bussi X Rodríguez F Francés G Benito Y Sánchez Mova, A. Sopeña, 2013, Sediment vield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment. Hydrology and Earth System Science, 17, 3339-3354
- G. Bussi, F. Francés, J.J. Montoya, P. Julien. 2014. Distributed sediment yield modelling at Goodwin Creek: importance of initial sediment conditions. Environmenta Modelling & Software, Accepted:
- Francés, F., J. I. Vélez, and J. J. Vélez (2007), Splitparameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology

