

Instituto de Ingeniería del Agua y Medio Ambiente

On the importance of remote sensing data to implement a dynamic vegetation model applied to a semi-arid experimental plot

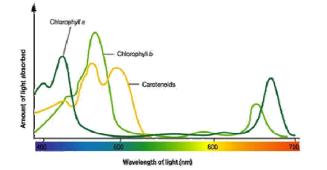
G.Ruiz-Pérez¹, C. Medici^{1,2}, M. González-Sanchis³, A. del Campo³ and <u>F. Francés¹</u>

(1): Research Institute of Water and Environmental Engineering. Universitat Politècnica de València. Spain.
 (2): Princeton Environmental Institute, Princeton University, NJ,USA
 (3): Research Group in Forest Science and Technology (Re-Forest). Universitat Politècnica de València, Spain

HIC 2014-11th INTERNATIONAL CONFERENCE ON HYDROINFORMATICS

- □ The vegetation plays a key role in a catchment's water balance, particularly in semi-arid areas (Laio et al., 2001)
- □ In these water-controlled areas, the vegetation controls the water cycle through (Rodriguez-Iturbe et al., 2001):
 - Interception
 - Infiltration
 - > Evapotranspiration
 - => Surface runoff
 - => Groundwater recharge

In semi-arid regions, the actual evapotranspiration may account for more than 90% of the precipitation \rightarrow The proper knowledge of this process is vital (Andersen, 2008)


- Traditionally, most of hydrological models assume an static vegetation
- But, in the last decades, the number of hydrological models taking into account the vegetation dynamics has increased substantially

COMPLEX MODELS	SIMPLE MODELS
 Accurate description of the processes Sensation of total reliability High number of parameters High data requirement 	 Processes are schematised Low number of parameters Lower data requirement Memote Remote Sensing Data

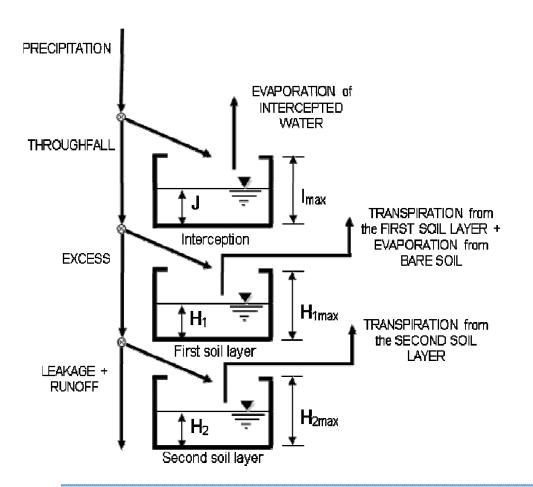
- The advantages of remote sensing (including vegetation) are:
 - Spatial coverage

- > Allows gathering information about inaccessible sites
- Replaces costly data collection on the ground
- > Nowadays, some time series are relatively large
- Disadvantage: higher uncertainty than field observations
- The use of remote sensing data in calibration leads to improved the prediction (Zhang et al., 2011)
- □ Most of the studies → satellite data combined with field data

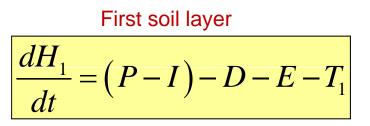
- Is a parsimonious and simple model suitable to reproduce vegetation dynamics in semi-arid environments?
- Can we really use satellite data alone to implement this simple dynamic vegetation model?

Methodology/outline

□ Description of the case study:


- Selected parsimonious vegetation model (for semi-arid environments)
- study area: Aleppo pine experimental plot in La Hunde forest (East Spain)
- Calibration of the model using satellite data
- □ Validation of the results using field data:
 - Transpiration
 - Soil Water Content
- Analysis of results and conclusions

LUE model

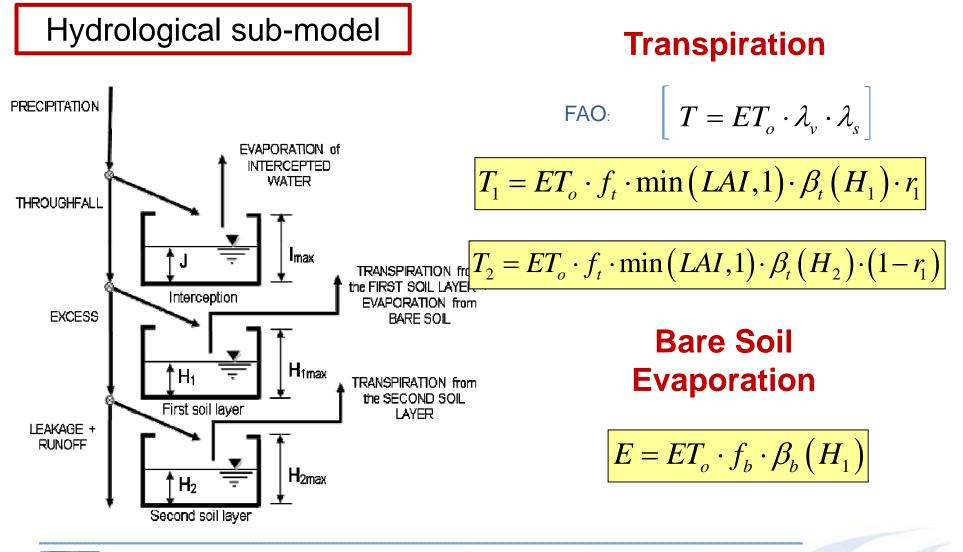

Hydrological sub-model

Water balance:

Interception storage

$$\frac{dJ}{dt} = I - \min\left(ET_o \cdot f_t, J\right)$$

Second soil layer


$$\frac{dH_2}{dt} = D - L - T_2$$

7

LUE model

8

LUE model

Dynamic Vegetation sub-model

$$\frac{dB_l}{dt} = (LUE \cdot \varepsilon \cdot APAR - Re) \cdot \varphi_l - \kappa_l \cdot B_l$$

LEAF BIOMASS **B**_I [kg DM m⁻² veg cover] LIGHT USE EFFICIENCY LUE [kg DM m⁻² MJ⁻¹]

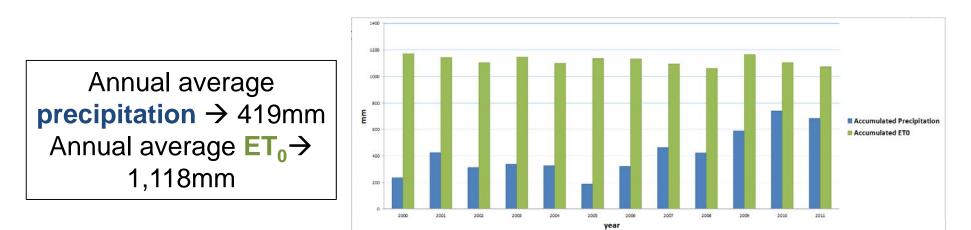
 ε depends on:

- Water Stress => connection with hydrological model
- > Temperature

$$= B \cdot SLA \cdot f_t \qquad LAI_r = LAI \cdot \left(1 - \overline{\zeta_{10}}\right) \longrightarrow \qquad \text{Corr}\\ \text{com}$$

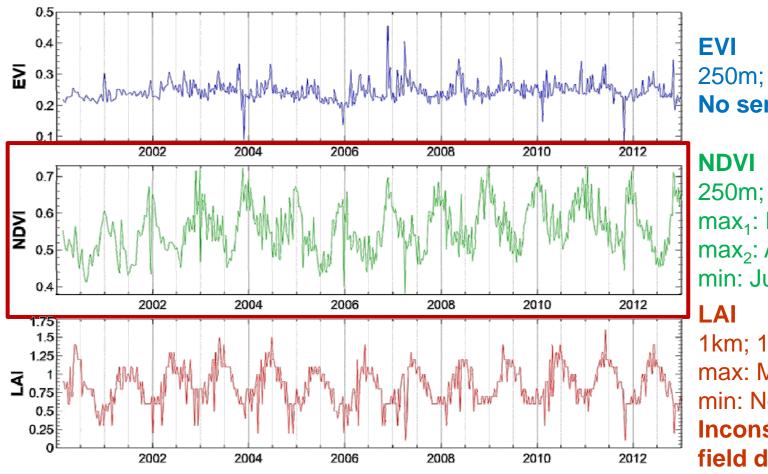
Corrected to be compare with NDVI

LAI



- Water-controlled area
- Seasonality
- Aleppo pine

Experimental plot location

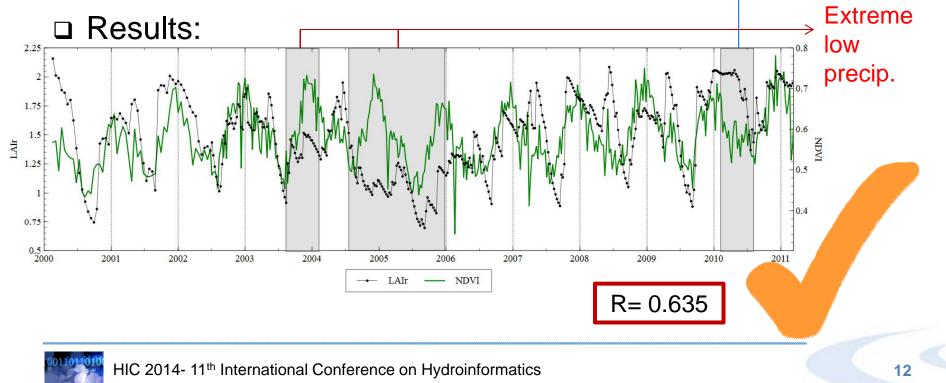


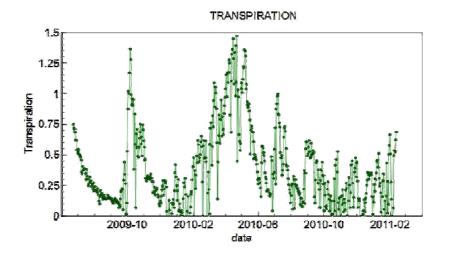
Satellite Data

MODIS PROCESSED DATA BY NASA:

250m; 16days No sense!

NDVI 250m; 16days max₁: Nov/December max₂: April/May min: July/August

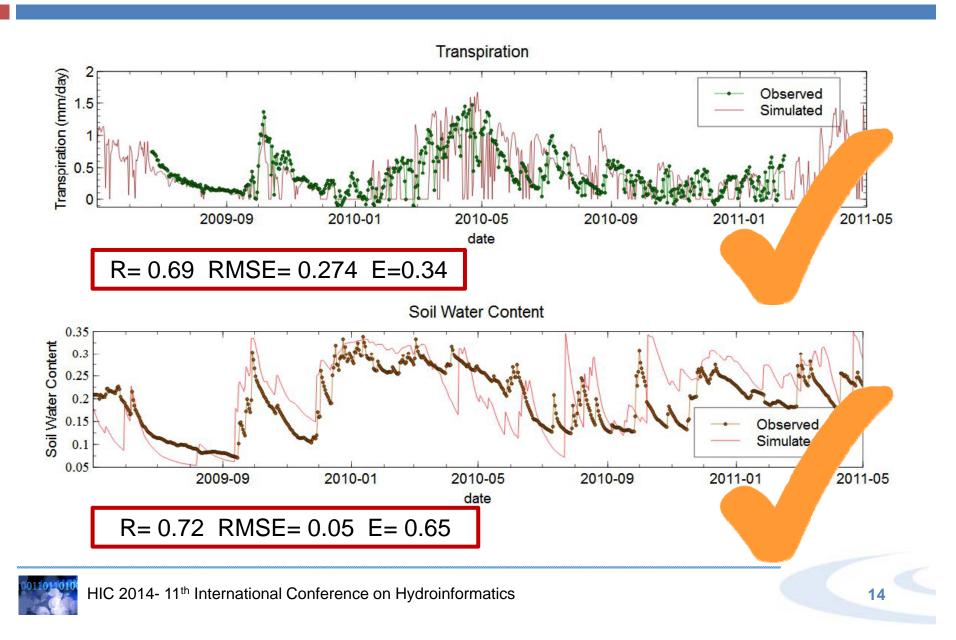

1km; 16days max: March/May min: Nov/January Inconsistent with field data!


Extreme high precip.

- □ Automatic calibration using a genetic algorithm (Evolver)
- Objective function: Pearson correlation coefficient
 - > NDVI provided by Modis/NASA
 - LAIr simulated by the model

Field data

TRANSPIRATION


- Sap flow sensors → Heat-Ratio Method
- 4 trees with 3 diameter classes

SOIL WATER CONTENT

- Soil moisture sensors
- > 30cm depth
- 9 sensors: 6 with tree's direct influence and 3 without

Validation

Conclusions

□ Is a dynamic model of vegetation really necessary?

Flows	Dry year (2005)		Medium year (2008)		Wet year (2010)	
	mm	%	mm	%	mm	%
Ppt	188		420.6		739	
ET (EI+T+Es)	165.18	91.0	331.84	77.6	431.87	56.9
Excedence	16.34	9.0	95.88	22.4	326.93	43.1
Blue/Green	0.098		0.289		0.757	

STATIC VEG.

DYNAMIC VEG.

Flows	Dry year (2005)		Medium year (2008)		Wet year (2010)	
	mm	%	mm	%	mm	%
Ppt	188		420.6		739	
ET (EI+T+Es)	147.00	81.4	302.32	70.6	385.37	50.9
Excedence	33.47	18.6	126.02	29.4	370.99	49.1
Blue/Green	0.227		0.4	17	0.96	63

- Reliable estimates of spatial and temporal variations of actual evapotranspiration as well as precipitation are vital to obtain reliable estimates of the available water resources => in some situations it can be necessary to deal with the vegetation dynamics
- A parsimonious model is able to adequately reproduce the dynamics of vegetation and also reproduces properly the soil moisture variations
- NDVI data alone can be used to implement this model, including hydrological parameters. Satellite data is an alternative to calibrate models at ungauged or inaccessible areas/catchments

Many thanks for your attention

Prof. Félix Francés (ffrances@hma.upv.es)

Research Group of Hydrological and Environmental Modelling http://lluvia.dihma.upv.es Research Institute of Water and Environmental Engineering http://iiama.upv.es Universitat Politècnica de València, Spain

This work has been funded by the Spanish Ministry of Economy and Competitiveness through the research project INTEGRA (ref. CGL 2011-28776-C02). The MODIS data were obtained through USGS/Earth Resources Observation and Science (EROS) Center. The meteorological data were provided by the Spanish National Weather Agency (AEMET).

> HIC 2014 – 11th International Conference on Hydroinformatics New York, USA August 17 – 21, 2014

