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<A M2 Introduction (1/3)

59|
0 Problem: Hydrological models provide predictions, which are

not lacking of uncertainty

= In general, model state variables(e.g. streamflow “q,") do not match
observations of the predictand “q” ¢ 7% {,

Q Considering = “q.” as a Random Variable D (Q, q. (Qh,e ; Xn))

= The existence of the joint pdf

» We can define the Predictand pdf conditioned on ¢
(Predictand cpdf) p(q CIS)
0 So far, equations are independent of the kind of error model

(additive/multiplicative)
= |f we consider an additive error, Predictand cpdf = Error cpdf

g=q,+¢ — pldq,)=p(dq,)
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Introduction (2/3)

0 Modeling the Error term g =¢g_+e
> We can model the two components of Error at time step “”

—p(q,

DETERMINISTIC RANDOM ERROR 9 X
p qt‘ he>* "n

0.)=Plda.)=Plda. |

THE PREDICTIVE
CPDF
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<A 2ma Introduction (3 /3)

A
0 Classical approach for modeling the Error term

Considers additive errors serially uncorrelated (White Noise)

UNBIASED With Gaussian distribution
1.1.D. - » . :
ERROR Constant conditional variances (homoscedastic errors)

It does not account for Bias

> Eqaivalent to Std. Least Squares calibration (SLS)

Qa Errors in Hydrology do not satisfy the SLS hypotheses
Causes are mainly the Input errors and an unsuitable
H. Model structure
Consequences

D ﬂﬁl\A 'Y al i« A A‘
DIaSeaq Ol bUIIUIJl.UU IJdld imet

An incorrect estimation of the Predictive uncertainty
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Aims of this research

I I ——————,
Q Phase |

> Inferring a Specific Error Model that best fits Hydrological
Model Errors

Inference must be a JOINT INFERENCE to avoid Biased
parameters in both models

> Compare Performance of SLS vs Specific Error Model

O Phase Il (Not concluded)

> We try an upgrade of the error model through a Bias model
improvement, in order to achieve a better performance
than in phase |
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<A Phase |: Error Model description
] (%‘Hhe 5(
Time-varying Error variance & Bias l
i EQSt
. __ Ne e f
Variance o-8|q” — (9 + 92 q, blqst 1
. be\qst = H; + a:qs,t qs,t < 95e
Bias ’
be|qs’t — 66e + 07eqs,t qs,t > QSe
Modeling the Errors dependence Modefing innovations Z, through the
through an AR(p) model erX|bIe Skew Exponential Dlstrlbutlon (SEP)
Unbiased elq,,—blg,, &lq., - S
Studentized 77, =—— —=— 5
Error 0} e 0} . 5 %
p 0.2 g
:Z¢577ri+zr E ¢p (B)”r :Zr : 0, -'2/ 2 §
i=1 Errr %
(",‘\;El‘;‘éa:l';gz) Symmetric and Gaussian as particular cases
-1
‘qt 4., +bla, +o,, (6, (B)z]] = prlala.)=r(da.)= p(e\qs,f)‘
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Phase I: Total Laws

QO In defined Error model, some parameters of variance &
Bias functions are not free !

> Marginal and Conditional Error distributions belong to the
same joint distribution p (e, q, )
m Linked by Total Variance Law (TVL) and Total Expectation Law (TEL)

m For the correct implementation of the JOINT INFERENCE with a
Time-Varying Error Model = TOTAL LAWS must be enforced !

TVL N |
o5 “/ -e-qS Joint distribution
o7 ‘ //llplwo A —— Error Marginal distribution
— J”/lN”"\\\\
V(e)=£ [V(e‘% ﬂ t [E (e\qw)} : E
os ””"f"" Error
iy Conditional € |4 ¢
TEL distribution
E(e)=E| B(elg, ) |=E[blq, ]

100 "4
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Phase I: Predictive uncertainty

59|
Given the previously obtained, Predictive pdf conditioned on the simulated
streamflow...

"p(qt q,,)=pl(ela,,)=r(€la,,)

...we can get the Predictive pdf by its Marginalization on the parameters...

q A p(Qt‘Xﬂ)’Zn’éi’!):jp(qf‘ghae’)z” g(ghae
)

g.,X)\)deo

)

| Posterior of parameters |

»Bayesian Joint inference
»MCMC sampling
DREAM-ZS algorithm

[Ter Braak and Vrugt (2008)]

-
-
e e e e - - -

95% U.B.
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Phase |: Case Study

0 Distributed Hydrological Model (on a Spanish humid catch.)
E m TETIS http:/iluvia.dihma.upv.es/EN/software/software.html

> Effective Parameter Structure divided in two parts:
= An estimated Value in each cell setting-up the Parameter Maps

= Regularization Function: Global calibrated correction factor
F, applied to each parameter map
—)

%
1)

i

[TTIITTT

1111111

x F2 .......

E
i
zzazseaonon -

X F1

y ) ZGmIIEG Inclusion of hydrological state variables in the residuals dependence model

riy, GENERAL ASSEMBLY 2015
PRAGUE 2015

\mmmnm UNION OF GEODES




ty

ici

SLS vs EM2 comparison (1/5)
Independence Homoscedast

Normality

11lama
f Phase |

o

A
0 Fulfillment of the Error Model Hypothesis

100 110 120 130

10 20 30 40 50 60 70 80 90

0

Q
3
o
154
c
[}
©
c
o
(2
Q
e
v
O
2
o
SR »
S S [} -
uopjejaii0o03ny ajdwes o
| | | | h
| | | | -—
| | | | Al
| | | | c
| | | | b
I I I I s [7.)
4 3 2 S S ° (]
Kysuag )
O
o ‘=
| | | | | | | | 12
| | | | | | | | W
| | | | | | | | 1
| | | | | | | | - [}
| | | | | | | | o v
| | | | | | | | 1= O
| | | | | | | I -
I | | | | | | | lg @
| | | | | | | I R —
| | | | | | | | o]
-_— | | | | | | | 18 o
| | | | | | | | .mu
| | | | | | | |
,\\\\,\\\\,\\\\4\\\\,\\\\,\\\\,\\\o\,\\\\w o
8 | | o ! | | | | | —
Lol 41 114 1 1o O
| | | | | | | | L]
| | | | | | | | ]
r ﬁ\\\ﬂ\\\ﬂ\\\ﬂ\\\4\\\4\\.\4\\\4\\\\% >
| | | | | | | | -
L___+r___+r___+r___+___d1___1___1___J9
| | [ | [ | | | O G
- r | | e | Y| C e | ° (o]
It e e e e Tt e
EEREEEEEE A P U S A A
| | o o 1%, . !® | I o [e]
ot R Sl R SR EEEE RER L -
[ X1] [7,)
[ N N N I R R I L s o 3 .T\ I | 3
[ N B R B ! Le 1 eeVel g glea e I I 12 2
Sw4\,\7ﬂ4\7744\7ﬁ\ ! ! o %o e y . ° ! ! v
[ R B R A B I I ! Poes, I I I lo &
— [ N N N T R ! ! ! 20 ! ! ! A
[ N I I R ! ! ! % ! ! !
[ T R e R O R I ! | ! | | ! | Jo
S [ N B R B 154 © = © ° 0 =] 0 S
R R R S S I R '
P — 0
[ e N 1+
[ R R R R B B I
[ R R R R B B I
[ N T A R R T I lo
[ e e N N N — -
Fg |1 11 1 1 el
R I AR —
[ I B A R R T R - Jwo
[ R R R R B B I — ﬁw
[ e e N N N b
[ R R R R B B I I mm
R i B T e %
Pl 1SS 8 M e NS -5 O S s < S 2
[ R R R R B B I S IS IS oS IS IS =] m
[ R R R R B B I
. uoneja.u020iny ajdwes m
T T T O T O T A S A Y B B B B
T T T O T O T A S A Y B B B B g
i Ft e e el e s et el e e Bl s s e Bl e B B i 5
T T T O T O T A S A Y B B B B L
T T T O T O T A S A Y B B B B H
T T T O T O T A S A Y B B B B
T T T O T O T A S A Y B B B B zfmumm
T T T O T O T A S A Y B B B B -
T TR s R e T s s e s r e e T e N s o7
Kjisuag

' PRAGUE 2015



<<4A "™ Pphase I: SLS vs EM2 comparison (2/5)

I
0 Simulation performance

»> In our Case Study both show a similar performance of
prediction in Validation based on NSE, RMSE, and VE%
Indexes

SLS EM?2
% %
CALIB | VALID |CHANGE CALIB VALID CHANGE
NSE 0.93 0.86 7% 0.74 0.72 3%
RMSE 2.62 3.48 33% 5.00 4.99 0%
HYDRO MODEL
ErrVol (%) 2.40 -4.5 88% 9.90 2.70 73%
NSE 0.91 0.85 7%
MEAN RMSE 2.92 3.60 23%
PREDICTION
ErrVol (%) 0.01 -3.70
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<<4A "™ Pphase I: SLS vs EM2 comparison (3/5)

I
0 Assessment of the Predictive Uncertainty

> 95% Uncertainty Band \

8o T T T ]

O

SLS g | el *
£
=
EM2 2
<]
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<<4s ™™ phgse |: SLS vs EM2 comparison (4/5)

0 Assessment of the Predictive Uncertainty
> Full Predictive distribution Reliability (PP- PLOTS)

| Rellablllty 0. 77

SLS

| | | | ;
0.3 0.4 0.5 0.6 0.7
U[0,1] Theoretical 1 - (P-Value)

EM2

Observed 1 - (P-Value)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

U[0,1] Theoretical 1 - (P-Value}
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<<4A "™ Pphase I: SLS vs EM2 comparison (5/5)

I
a Parameters value coherence

> EM2 shows less Biased parameters than SLS

= EM2 exhibits less deterioration of the H. Model performance between
calibration and validation (Divergence Phenomenon)

SL.S EM2
% %
CALIB VALID | CHANGE CALIB VALID | CHANGE
NSE 0.93 0.86 7% 0.74 0.72 3%
RMSE 2.62 3.48 33% 5.00 4.99 0%
HYDRO MODEL
ErrVol (%) 2.40 -4.5 88% 9.90 2.70 73%

= For some parameters SLS yieids inferred values without physical
meaning
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a Phase I: Conditional Bias €===>q,

Motive of Phase |l

a biunivocal relation

> it doesn’t show a good performance in validation

100

20 40 60 80 100

A

=  Simulated streamflow (for the M.A.P)
- Bias corrected streamflow prediction

® Observed streamflow

» Point A: at streamflow recession scenario
Point B: at streamflow peak scenario

= Both points show same “q,” (Blue L.)
and therefore same Bias (Green L.)

» Observations ét (Red points)
* At A, below “q,’
* At B, above “q.”

» Different hydrological scenarios with
different active processes, can yield the
same “q.” value

» But H. Model can produce different
Bias when it models those different
hydrological scenarios

3 26 UGG
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<=4 "™ Phase II: Bias Model description (1 /2)

Q In classical linear regression is common the analysis of
residuals searching for a misspecification of the fitted

model ezf! regressors!?

0O A fitted H. model with structural problems could also
exhibit residuals correlated with “exogenous”
variables (regressors) of the modeled processes ...

= Variables toinclude ? (all Standardized X, k=1,...,n):

"« State Variables: Runoff (t), Interflow(t) and Base Flow
1t t1,t2, )

Or even, Forcing: Precipitation (t, t-1, t-2, ...)

O Resic-juals degendence model: ARX(p.q)
Z¢ntz+zz kt] arx,t = ¢p(B)'|:ZVqu(B)Xk+Zm
k=1

Studentized lAlt k= 1 _OE Innovations
Error utoregressive xogenous” (White Noise)

Filter Filter
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<=4 "™ Pphase II: Bias Model description (2/2)

I
0 Relation between ARX(p , q) model and the Bias model

¢, (B ZW (B)X,+Z,,

B)X+2.. | =0 (8) S (BX. [+, (B)[2.]

J
nN=—— Tl Explained part of TI Random part of
- Ge|q I | studentized Error 1 studentized Error
Studentized —
Error o ‘<1] o
c 1 e|q
— 1| = =N, +MNy, o =Ny E["l[]zo V[T]H]=1
e‘q e‘q
UNBIASED
Studentized Error
UUCI loa Iuliviuvul i UI 11 I\k DIU. LAlT le |dU|e§

are regression coefficients to be inferred JOINTLY
| offer us keys about the sources of the Bias (research!)
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JERIELE! Phase ll: "Man is the only animal to stumble twice

< N
on the same stone” Spanish proverb

|

0 Inference complications in Phase i
> Markov chains do not converge (> 1.000.000 lter.)
> Inferred lag(1) autocorrelation parameter too high (~ 0.99)

> Similar problems reported in papers where TL were not
apphed (eg [Schoups and Vrugt (2010)] [Evin et al. (2013, 2014)])

QO Suspected origin of the problem:
> In Phase | we had a bivariate pdf p(e,q, ) on which TL
were applied, and inference was successful

> In Phase Il we have a trivariate pdf p(e,q,,77,) on which
TL is applied but only onp(e,q, Jand inference has failed...
Total Laws must be enforced also, ?

on p(e,1;) and onp(q,.7,)
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Conclusions
I =

Q For the Phase |

> In our Case Study, Error models performance shows that

= SLS doesn't fulfill the initial hypotheses while the EM2 fulfillment is
good

m Simulations in valldatlon show that EM2 and SLS have a similar
performance (NSE & Vol.Error)

m EM2 vyields less biased ~hydrological parameters, which is
interesting for Regionalization methods

= EM2 shows better assessment of the Predictive Uncertainty

> Bias model © needs. to -consider more explicative
variables than 'the simulated streamflow =» Motive of

DhAaca |l
11adotC 11

> Time-Varying Error Models -must. enforce THE TOTAL
LAWS (TVL and TEL)
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Conclusions

[N e
Q For the Phase ll .

> An ARX model in the errors dependence model, it is
proposed for the Blas modellng

» Unconcluded by lnference compllcatlons

= It seems that enforcement of the Total Laws, firstly requires to
define correctly which is the jomt pd of the Error
Bivariate p(e,q,)
Trivariate p(e,qs,l]l)

= If so, TL must be applled on aII random varlables in that joint pdf
(issue to be checked)
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