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Introduction (1/3)
 Problem: Hydrological models provide predictions, which are

t l ki f t i t

( / )

not lacking of uncertainty
 In general, model state variables(e.g. streamflow “qs”) do not match 

observations of the predictand “q” ≠q qobservations of the predictand “q” ≠ sq q
 “qs” as a Random Variable  Considering

 We can define the Predictand pdf conditioned on q

 The existence of the joint pdf

 We can define the Predictand pdf conditioned on qs
(Predictand cpdf) ( )sp q q

S f i i d d f h ki d f d l So far, equations are independent of the kind of error model
(additive/multiplicative)

 If we consider an additive error, Predictand cpdf = Error cpdf

( ) ( )= + → = ss sq q e q q p ep q
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Introduction (2/3)
 Modeling the Error term

( / )
= +sq q e

 We can model the two components of Error at time step “t”
( ) ( ) ( )| |ε ε+ → == + =t s s t s t st s t st ttq p q pq q b q e p qq q( ) ( ) ( ), , , , ,,| |t s s t s t st s t st ttq p q pq q q p qq q

DETERMINISTIC
OR BIAS

RANDOM ERROR

THE PREDICTIVETHE PREDICTIVE 
CPDF
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Introduction (3/3)
 Classical approach for modeling the Error term 

( / )

 Considers additive errors serially uncorrelated (White Noise)
 With Gaussian distribution

C t t diti l i (h d ti )
UNBIASED

I.I.D. 
 Constant conditional variances (homoscedastic errors)
 It does not account for Bias

 Equivalent to Std Least Squares calibration (SLS)

ERROR

 Equivalent to Std. Least Squares calibration (SLS)

E i H d l d t ti f th SLS h th Errors in Hydrology do not satisfy the SLS hypotheses
 Causes are mainly the Input errors and an unsuitable

H M d l t tH. Model structure
 Consequences

 Biased or “corrupted” parameter values Biased or corrupted  parameter values
 An incorrect estimation of the Predictive uncertainty
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Aims of this research

 Phase I Phase I
 Inferring a Specific Error Model that best fits Hydrological

Model ErrorsModel Errors
 Inference must be a JOINT INFERENCE to avoid Biased

parameters in both modelsp
 Compare Performance of SLS vs Specific Error Model

 Phase II (Not concluded)
f We try an upgrade of the error model through a Bias model

improvement, in order to achieve a better performance
th i h Ithan in phase I

Inclusion of hydrological state variables in the residuals dependence model



Phase I: Error Model descriptionp
Time-varying Error variance & Bias

, 1| ,2εσ θ θ= +
s t

e e
q s tq

3 4| 5θ θ θ≤= +e e
s t

e
e q s tb q q

Variance

, 3 4| , , 5s t s te q s tq q

, 6 7| , , 5θ θ θ>= +
s t

e e
s t

e
e q s tb q q

Bias

Modeling the Errors dependence
through an AR(p) model

Modeling innovations Zt through the 
flexible Skew Exponential Distribution (SEP)
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Symmetric and Gaussian as particular casesInnovations
(White Noise)

( )[ ] ( ) ( ) ( )1σ εφ − = + +   → = =t tt t t t ttq q b Z p p e q pq qq B q
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Phase I: Total Laws

 In defined Error model, some parameters of variance &
Bias functions are not free !
 Marginal and Conditional Error distributions belong to the

( )
g g

same joint distribution
 Linked by Total Variance Law (TVL) and Total Expectation Law (TEL)

( ), sp e q

 For the correct implementation of the JOINT INFERENCE with a
Time-Varying Error Model  TOTAL LAWS must be enforced !

TVL

TEL

Error 
Conditional 
distribution

,s te q
TEL

( ), sp e q
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Phase I: Predictive uncertaintyy
Given the previously obtained, Predictive pdf conditioned on the simulated 
t fl ( ) ( ) ( ), , ,ε= =s t st s t tp p e q p qq q

streamflow…  

…we can get the Predictive pdf by its Marginalization on the parameters…

P t i f tPosterior of parameters
Bayesian Joint inference
MCMC samplingMCMC sampling

DREAM-ZS algorithm
[Ter Braak and Vrugt (2008)]

Inclusion of hydrological state variables in the residuals dependence model



Phase I: Case Study

 Distributed Hydrological Model (on a Spanish humid catch.)

y

 Distributed Hydrological Model (on a Spanish humid catch.)
 TETIS

 Effective Parameter Structure divided in two parts:
http://lluvia.dihma.upv.es/EN/software/software.html

 Effective Parameter Structure divided in two parts: 
 An estimated Value in each cell setting-up the Parameter Maps
 Regularization Function: Global calibrated correction factorRegularization Function: Global calibrated correction factor 

Fi applied to each parameter map

x  F1 x  F2 …….

Inclusion of hydrological state variables in the residuals dependence model



Phase I: SLS vs EM2 comparison (1/5)p ( / )

 Fulfillment of the Error Model Hypothesis

0.8   
SLS EM2

Normality Independence Homoscedasticity
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Phase I: SLS vs EM2 comparison (2/5)p ( / )

 Simulation performance
 In our Case Study both show a similar performance of

prediction in Validation based on NSE, RMSE, and VE%
SLS EM2

p
indexes

CALIB VALID
% 

CHANGE CALIB VALID
% 

CHANGE
NSE 0.93 0.86 7% 0.74 0.72 3%

HYDRO MODEL
RMSE 2.62 3.48 33% 5.00 4.99 0%

ErrVol (%) 2.40 -4.5 88% 9.90 2.70 73%ErrVol (%) 2.40 4.5 88% 9.90 2.70 73%

NSE 0.91 0.85 7%

RMSE 2 92 3 60 23%MEAN 
PREDICTION

RMSE 2.92 3.60 23%

ErrVol (%) 0.01 -3.70
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Phase I: SLS vs EM2 comparison (3/5)p ( / )

 Assessment of the Predictive Uncertainty
 95% Uncertainty Band

80  

40

60
SLS

0

20

0 30 60 90 120 150
0

EM2

Inclusion of hydrological state variables in the residuals dependence model



Phase I: SLS vs EM2 comparison (4/5)
 Assessment of the Predictive Uncertainty

p ( / )

 Full Predictive distribution Reliability (PP-PLOTS) 
1  
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Phase I: SLS vs EM2 comparison (5/5)p ( / )
 Parameters value coherence
 EM2 shows less Biased parameters than SLS
 EM2 exhibits less deterioration of the H. Model performance between 

calibration and validation (Divergence Phenomenon)
SLS EM2

CALIB VALID
% 

CHANGE CALIB VALID
% 

CHANGE
NSE 0.93 0.86 7% 0.74 0.72 3%

HYDRO MODEL
RMSE 2.62 3.48 33% 5.00 4.99 0%

ErrVol (%) 2 40 4 5 88% 9 90 2 70 73%

For some parameters SLS ields inferred al es itho t ph sical

ErrVol (%) 2.40 -4.5 88% 9.90 2.70 73%

 For some parameters SLS yields inferred values without physical
meaning

Inclusion of hydrological state variables in the residuals dependence model



Motive of Phase II

 Phase I: Conditional Bias==qs a biunivocal relation
 it doesn’t show a good performance in validation

 Point A: at streamflow recession scenario
Point B: at streamflow peak scenario 
 Both points show same “qs” (Blue L.)

and therefore same Bias (Green L )and therefore same Bias (Green L.)

 Observations      (Red points)
• At A, below “qs”

A B  Different hydrological scenarios with

At A, below qs
• At B, above “qs”

different active processes, can yield the
same “qs” value

 But H. Model can produce different
Bias when it models those different
hydrological scenarios

Simulated streamflow (for the M.A.P) 
Bias corrected streamflow prediction
Ob d t fl

Inclusion of hydrological state variables in the residuals dependence model

hydrological scenariosObserved streamflow



Phase II: Bias Model description (1/2)

 In classical linear regression is common the analysis of

p ( / )

 In classical linear regression is common the analysis of
residuals searching for a misspecification of the fitted
model ( )=e f regressors ?

 A fitted H. model with structural problems could also
exhibit residuals correlated with “exogenous”

( )f g

exhibit residuals correlated with exogenous
variables (regressors) of the modeled processes …

 Variables to include ? (all Standardized X k=1 n): Variables to include ? (all Standardized Xk k=1,…,n):
 State Variables: Runoff (t), Interflow(t) and Base Flow

(t, t-1, t-2, …)( , , , )
 Or even, Forcing: Precipitation (t, t-1, t-2, …)

 Residuals dependence model: ARX(p,q)p (p q)

( ) ( ), ,
1 1 0 1

η φη φ− −
= = = =

= + + = +≡  
p qn n

t i t i kj k t j arx t p kq k arx
i k j k

W X Z B W Bη X Z
Autoregressive “Exogenous” InnovationsStudentized

Inclusion of hydrological state variables in the residuals dependence model
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“Exogenous”
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Phase II: Bias Model description (2/2)
 Relation between ARX(p , q) model and the Bias model

n

p ( / )

 

( ) ( )
1

φ
=

= +
n

p kq k arx
k

B W Bη X Z

  ( ) ( ) ( )[ ]1 1

1
φ φ− −

=

 = + 
 

n

p kq k p arx
k

B W B BX Z
e

( ) ( )1

1
φ −

=

 = + 
 

n

p kq k arx
k

B W Bη X Z

=
e q

η
σ

Studentized

Explained part of
Studentized Error

Random part of
Studentized Error

[ ] [ ]0 1
−

= = + = = =I e q
I II II II IIE V

e η σeη η η η η η
σ σ

Error

 : Bias model is a function of “n” X Std State Variables

e q e qσ σ
UNBIASED 

Studentized Error
 : Bias model is a function of n  Xk Std. State Variables

 Wkq are regression coefficients to be inferred JOINTLY
ff k b t th f th Bi ( h!)

Inclusion of hydrological state variables in the residuals dependence model
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Phase II: ”Man is the only animal to stumble twice
on the same stone” S i h bon the same stone  Spanish proverb

 Inference complications in Phase II
 Markov chains do not converge (> 1.000.000 Iter.)
 Inferred lag(1) autocorrelation parameter too high (~ 0.99) Inferred lag(1) autocorrelation parameter too high (  0.99)
 Similar problems reported in papers where TL were not 

applied (e g )[Schoups and Vrugt (2010)] [Evin et al (2013 2014)]applied (e.g.                                          )
 Suspected origin of the problem:

I Ph I h d bi i t df hi h TL( )

[Schoups and Vrugt (2010)] [Evin et al. (2013, 2014)]

 In Phase I we had a bivariate pdf on which TL
were applied, and inference was successful

( ), sp e q

 In Phase II we have a trivariate pdf on which
TL is applied but only on and inference has failed…

( ), ,ηs Ip e q
( ), sp e q

 Total Laws must be enforced also, 
 on and  on  ( ),ηIp e ( ),ηs Ip q

( )sp q

?
Inclusion of hydrological state variables in the residuals dependence model
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Conclusions

 For the Phase I
 In our Case Study, Error models performance shows that
 SLS doesn’t fulfill the initial hypotheses while the EM2 fulfillment isyp

good
 Simulations in validation show that EM2 and SLS have a similar

performance (NSE & Vol.Error)
 EM2 yields less biased hydrological parameters, which is

interesting for Regionalization methodsinteresting for Regionalization methods
 EM2 shows better assessment of the Predictive Uncertainty

 Bias model needs to consider more explicative Bias model needs to consider more explicative
variables than the simulated streamflow  Motive of
Phase IIPhase II

 Time-Varying Error Models must enforce THE TOTAL
LAWS (TVL and TEL)

Inclusion of hydrological state variables in the residuals dependence model
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Conclusions

 For the Phase II
 An ARX model in the errors dependence model, it is

proposed for the Bias modelingp p g
 Unconcluded by inference complications…
 It seems that enforcement of the Total Laws, firstly requires to It seems that enforcement of the Total Laws, firstly requires to

define correctly which is the joint pdf of the Error
 Bivariate ( ), sp e q
 Trivariate
 …

( ), sp q
( ), ,ηs Ip e q

 If so, TL must be applied on all random-variables in that joint pdf
(issue to be checked)

Inclusion of hydrological state variables in the residuals dependence model
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