

Instituto de Ingeniería del Agua y Medio Ambiente

On the use of satellite data to implement a distributed dynamic vegetation model in a Mediterranean catchment

G.Ruiz-Pérez¹, M. González-Sanchis², A. del Campo² and F. Francés¹

(1): Research Institute of Water and Environmental Engineering. Universitat Politècnica de València. Spain. (2): Research Group in Forest Science and Technology (Re-Forest). Universitat Politècnica de València, Spain

- □ The vegetation plays a key role in a catchment's water balance particularly in Mediterranean areas (Laio et al., 2001)
- □ In these water-controlled areas, the vegetation controls the water cycle through (Rodriguez-Iturbe et al., 2001):
 - Interception
 - Infiltration
 - > Evapotranspiration
 - Surface runoff
 - Consequently, groundwater recharge

In some Mediterranean regions, the evapotranspiration may account for more than 90% of the precipitation \rightarrow The proper knowledge of this process is vital (Andersen, 2008)

Traditionally, very few hydrological models had incorporated the vegetation dynamics

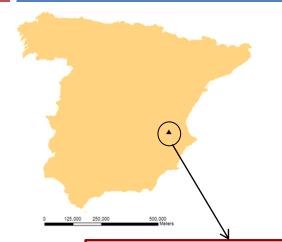
esearch group in forest science and technology

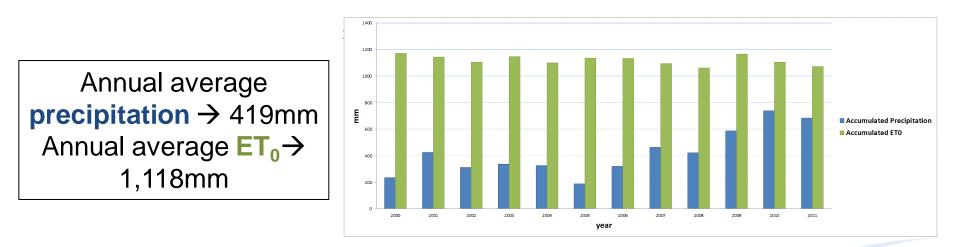
But, in the last decades, the number of hydrological models taking into account the vegetation development has increased substantially

COMPLEX MODELS	SIMPLE MODELS
 Accurate description of the processes Sensation of total reliability High number of parameters High data requeriment 	 Processes are schematised Low number of parameters Low high data requirement Memote Remote Sensing Data
Re-ForeST	

- Is a parsimonious and simple model suitable to reproduce vegetation dynamics in semi-arid environments?
- Is a parsimonious and simple model suitable to reproduce properly the fluxes of the water cycle?
- Can satellite data be used as alternative when field data is not available?

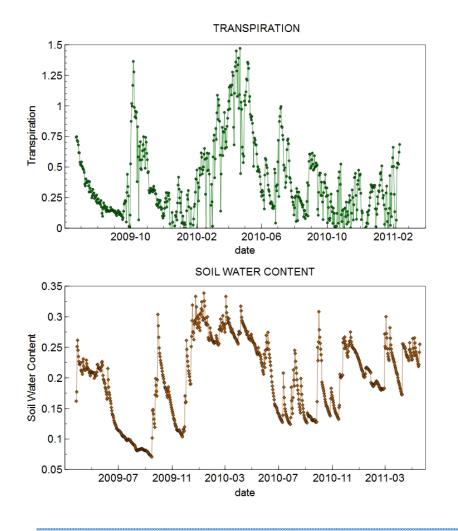
□ Description of the case study:


- Study area: Aleppo pine experimental plot in La Hunde forest (East Spain)
- Proposed parsimonious vegetation model (LUE-Model)
- Selected complex vegetation model with successful results in the study area (Biome-BGC)
- □ Implementation of both models:
 - LUE Model: with only NDVI (satellite information)
 - Biome-BGC: with field data
- Analysis of results and conclusions



Mediterranean semiarid climate:

- Water-controlled area
- Seasonality
- Aleppo pine


Experimental plot location

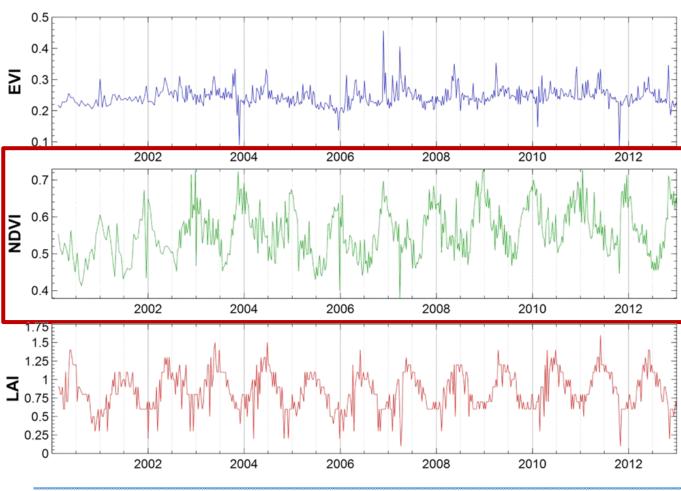
Field data

TRANSPIRATION

- Sap flow sensors → Heat-Ratio Method
- Three theoretical diameter classes

SOIL WATER CONTENT

- Soil Moisture sensors
- > 30cm depth
- 9 sensors: 6 with tree's direct influence and 3 without

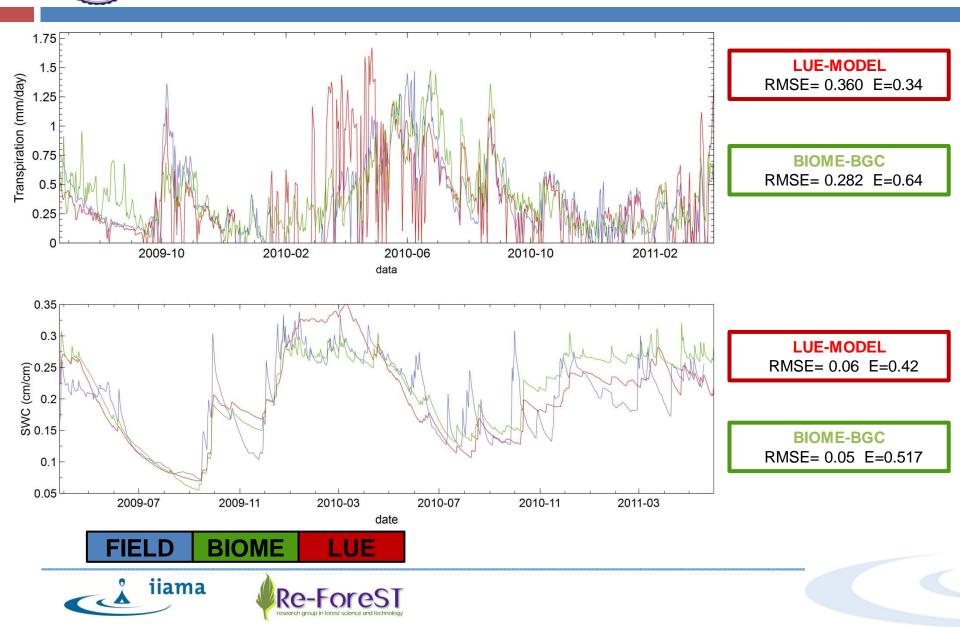


iiama

Satellite Data

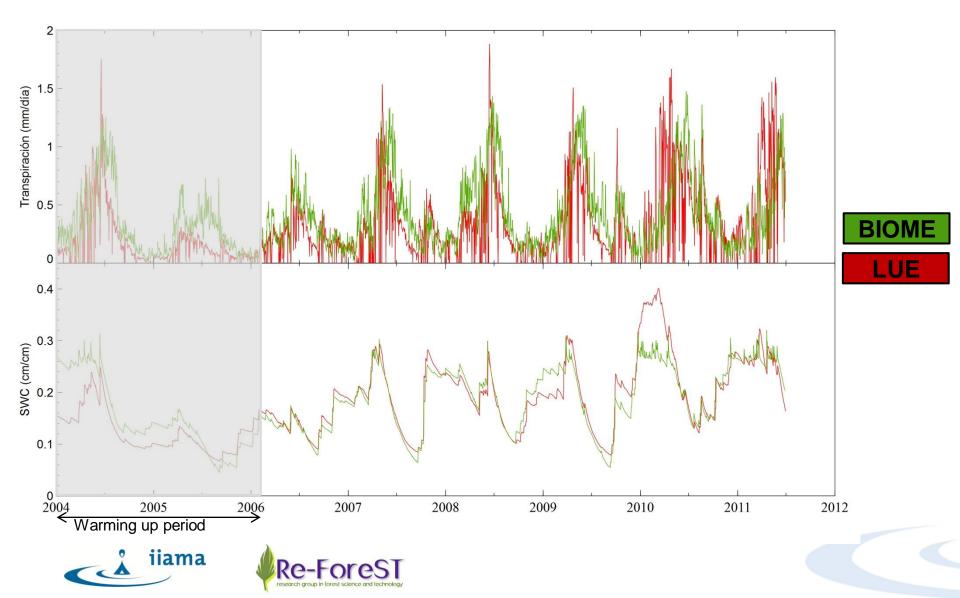
MODIS PROCESSED DATA BY NASA:

Re-ForeST


EVI 250m; 16days No sense!

NDVI 250m; 16days max₁: Nov/December max₂: April/May min: July/August

LAI


1km; 16days max: March/May min: Nov/January Inconsistent with field data!

Comparison between models

Comparison between models

LUE-MODEL Applied at plot scale

Flows	Dry year (2005)		Wet year (2010)	
	mm	%	mm	%
Ppt	188		739	
ET (EI+T+Es)	165.18	87.86	431.87	58.44
Excedence	16.34	8.69	326.93	44.24
Blue/Green	0.098		0.757	

Flows	Dry year (2005)		Wet year (2010)	
	mm	%	mm	%
Ppt	188		739	
ET (EI+T+Es)	156.30	83.14	408.80	55.32
Excedence	16.34	8.69	330.10	44.67
Blue/Green	0.104		0.807	

Wet year (2010)

□ Is a dynamic vegetation model really necessary?

Dry year (2005)

DYNAMIC

Flows

		· · · · · · · · · · · · · · · · · · ·	– ×		
	mm	%	mm	%	
Ppt	188		739		
ET (EI+T+Es)	165.18	91.0	431.87	56.9	
Excedence	16.34	9.0	326.93	43.1	
Blue/Green	0.098		0.757		
Flows	Dry year (2005)		Wet year (2010)		
	mm	%	mm	%	
Ppt	188		739		
ET (EI+T+Es)	147.00	81.4	385.37	50.9	
Excedence	33.47	18.6	370.99	49.1	

Re-Fores

STATIC

- Reliable estimates of spatial and temporal variations of actual evapotranspiration as well as precipitation are vital to obtain reliable estimates of the available water resources
- A parsimonious model is able to adequately reproduce the dynamics of vegetation and also reproduces properly the soil moisture variations
- A simple model together to satellite information can be used as alternative when there are not available information to implement a complex model

Instituto de Ingeniería del Agua y Medio Ambiente

Thanks for your attention

Guiomar Ruiz-Pérez (guruipr@cam.upv.es) Research Group of Hydrological and Environmental Modelling Iluvia.dihma.upv.es Research Institute of Water and Environmental Engineering iiama.upv.es Universitat Politècnica de València

This work has been funded by the Spanish Ministry of Economy and Competitiveness through the research project INTEGRA (ref. CGL 2011-28776-C02). The MODIS data were obtained through USGS/Earth Resources Observation and Science (EROS) center (https://lpdaac.usgs.gov/data_access). The meteorological data were provided by the Spanish National Weather Agency (AEMET).