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1. INTRODUCTION

More work needs to be done on quantifying
predictive uncertainty to support decision making
in water management (Gupta et al. 2014).

To enhance the reliability and resilience of water
resources systems, water management agencies
need to work towards improved methods for
better incorporating the predictive uncertainty
(Kasiviswanathan et al. 2017).

2. METHODS

Empirical analysis are carried out using daily data
from two catchments from the Model
Intercomparison Experiment (MOPEX) data set
using two conceptual rainfall-runoff models, GR4]
and CRR. In addition, we used four uncertainty
assessment schemes: model conditional processor
using the truncated Normal distribution (MCPt)
(Coccia & Todini 2011), model conditional processor
using the Gaussian mixture (MCPm), Bayesian joint
inference (B]I) (Schoups & Vrugt 2010; Hernandez-
Lépez & Francés 2017) and SLS (figure 1).

Figure 1. Schematic representation of the
experimental design.
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3. RESULTS

Table 1. Summary of the accuracy and reliability index to quantifying predictive uncertainty.

French Broad (Wettest)

Guadalupe (Driest)

Performance
GR4J

CRR

GR4J

CRR

Measure

SLS | MCPt [MCPm

Bl

SLS

MCPt

MCPm| BJI

SLS

MCPt

MCPm

BJl

SLS

MCPt

MCPm

BJI

NSEE[q/qs] | 0.87] o0.88] 0.92

0.80

0.90

0.90

0.94] 0.91]

0.46

0.36

0.52

0.40

0.46

0.41

0.40

0.39

Reliability 0.81] 0.98] 0.97

0.88

0.79

0.96

0.98] 0.96]

0.65

0.91

0.97

0.89

0.66

0.87

0.97

0.91

Precision 3.13

470 6.03

4.40

3.68

5.05

6.46] 3.94

0.54

1.34

2.11

1.37

0.55

1.22)

3.16

1.51

Figure 2. Transformed observed daily streamflow data against transformed predictions for
GR4] model on the Guadalupe River catchment. Representation of the truncated normal
joint distribution obtained applying the MCPt (left). Representation of the Normal space
obtained applying the MCPm (right).

Figure 3. Errors structure comparison between MCP approaches and BJl. Error bias
law (left). Error standard deviations law (right).
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Figure 4. Predictive uncertainty for GR4] model on the Guadalupe River catchment. Time
series of observations (dots) and 95% total prediction uncertainty bands (left). PP-Plots of
the predictive distribution for all performed (right).
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4. CONCLUSIONS

* Results demonstrate that the predictive

distribution are more accurate and
reliable  after model conditional
processor using the Gaussian mixture
(MCPm).
Bayesian joint inference (BJI) has
acceptable performance because the
hypothesized error model is not the most
suitable for the analyzed case study.

The model conditional processor (MCP)
approach provide more insight into the
error structure.
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