

Importance of ecohydrological modelling approaches in the prediction of plant behaviour and water balance at different scales

Alicia García-Arias (algarar2@upv.es), Guiomar Ruiz-Pérez, Félix Francés

INTRODUCTION

- <u>VEGETATION</u> \rightarrow main role in the <u>water balance</u> of **hydrological systems**
- Science gap: **hydrological modelling** \rightarrow effect of the **interception** and evapotranspiration
- ECOHYDROLOGICAL APPROACHES vs traditional strategies
- Objectives:
- To demonstrate the pivotal role of the vegetation in ecohydrological models
- To achieve a better understanding of the hydrological systems by considering the appropriate ecohydrological processes related to plants
- Main conclusion of this research: the capabilities to predict plant behaviour and water balance increase when interception and evapotranspiration are taken into account in the soil water balance

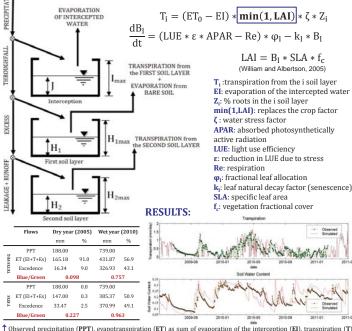
CASE STUDIES

Main role of vegetation in the water balance → TETIS-VEG model (Pasquato et al., 2015; Ruiz-Pérez et al., 2016) → key ecological processes in terrestrial areas determine the hydrological fluxes at plot scale

■ Implementation → Aleppo pine experimental plot of 30X30m sited in the Public Forest *Monte de La Hunde y La Palomera*, province of Valencia, East part of Spain

Main role of the water cycle into vegetation dynamics → RVDM model (García-Arias and Francés, 2016) \rightarrow key hydrological processes in riparian areas determine the vegetation dynamics at river reach scale

 Implementation → river reach of 230 m length located in the area called Terde, Mijares River, province of Teruel, East part of Spain



Experimental plot (Public Forest Monte de La Hunde v La Palo

PLOT SCALE – TERRESTRIAL VEGETATION

- **MODELLING APPROACH** \rightarrow hydrological sub-model: **TETIS** (Francés *et al.*, 2007)
- \rightarrow tank-based + dynamic vegetation LUE model \rightarrow TETIS-VEG
- each tank: different storages in the soil water column
- water intercepted by canopy \rightarrow max. interception capacity \propto LAI **simulated**. Water extraction = f (evaporation) (Pasquato *et al.*, 2015)
- · effective root zone: divided, two superimposed layers similar to Scanlon and Albertson (2003) \rightarrow **transpiration** (both layers) based on FAO recommendations (Allen *et al.*, 1998): f (LAI simulated) \rightarrow state of

vegetation affects the hydrological fluxes and the water storage

and evaporation from the bare soil (Es), and the remaining of water or excedence (mm) and as a percentage of th precipitation simulated by the TETIS-VEG and the TETIS models respectively. In red, the Blue/Green water ratio

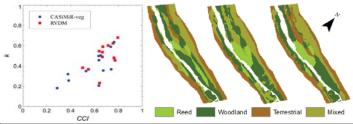
REACH SCALE – RIPARIAN VEGETATION

MODELLING APPROACH \rightarrow riparian hydrodynamics + vegetation dynamics

- CASiMiR-veg (Benjankar et al., 2011) flood impacts approach + RibAV (García-Arias et al., 2014) water balance approach + other impactsevolution-competition processes modelling $\rightarrow \underline{\text{RVDM}}$ (García-Arias and Francés, 2016)
- Transpiration from **different water sources** \rightarrow **unsaturated** soil layer and **saturated** soil layer (two main fluxes from the saturated zone: the hydraulic lift and the upward capillary water flow)
- water intercepted by canopy \rightarrow max. **interception capacity** \propto **fc**
- Transpiration is only allowed under no asphyxia conditions f (water content, water table relative position to the roots effective and max. depths)
- Vegetation evolution: *f* (LAI simulated, ET_{idx}) → <u>state of vegetation</u> affects the hydrological fluxes, water storage and hydrological fluctuations affect the vegetation development and wellbeing

$$\begin{split} T_{u} &= r_{u} \; f_{c} \left(ET_{0} - EI \right) H_{rel} & \begin{array}{l} \mbox{Particular case: effective root depth connected to the water} \\ \mbox{table} \rightarrow T_{u} \; at maximum rate (H_{rel} \rightarrow Z_{rel}) \\ T_{s} &= Min \left| \begin{array}{l} f_{c} \left(ET_{0} - EI \right) - T_{u} \\ r_{s} \; f_{c} \left(ET_{0} - EI \right) - T_{u} \\ r_{s} \; f_{c} \left(ET_{0} - EI \right) Z_{rel} \end{array} \right| \\ T_{rel} : relative \; depth \; of the saturated zone, f(water content, f(water content, optimum threshold and wilting point limit) \\ \mbox{Z}_{rel} : relative \; depth \; of the saturated zone, f(water table position relative to the asphysia, effective and maximum root depths) \\ \end{array}$$

$$\frac{dB_{l}}{dt} = (LUE * ET_{idx1}) * APAR - Re) * \phi_{l} - k_{l} * \varepsilon * B_{l}$$


$$ET_{idx1} = \frac{T_{u} + TS}{f_{c} ET_{0} - EI}$$
Evapotranspiration index

ε: stress factor that consider hydrological extremes

RESULTS: both models performed satisfactorily (objective functions: correctly classified instances, CCI, and kappa, k; succession lines classification: reed, woodland, terrestrial and mixed lines)

– El

(García-Arias et al., 2014)

CONCLUSIONS

- 1. In <u>arid and semi-arid areas</u>, the ET may account > 90% annual $P \rightarrow$ key flux of the water cycle, should not be neglected or poorly modelled
- 2. The **ecohydrological approaches** usually result in more **complex models**. This <u>increase in the number of parameters</u> should be only accepted in the cases in which the models result in a substantial better response (e.g. TETIS-VEG) or when they can provide more information (e.g. **RVDM**) considered relevant to the decision making (e. g. knowledge of ecohydrological processes)
- 3. At <u>plot scale</u>, **TETIS-VEG** was able to **reproduce the soil water content as well as the transpiration** by using **simple equations** and a **limited** amount of parameters. Overestimations of the B/G ratio (i.e. overestimation of the actual available water) where observed when neglecting vegetation dynamics. This pointed out the key role played by plants in the water balance
- 4. At reach scale, RVDM improved the riparian vegetation prediction by taken into account daily soil moisture and detailed ecohydrological **processes** related to the interaction between the vegetation dynamics and the water balance. This is a **more complex modelling approach** \rightarrow convenience on the choice shall be evaluated in each case of study before neglecting less complex models as CASiMiR-veg
- 5. As main conclusion \rightarrow water cycle key processes and their evolution in time and space are both cause and consequence of vegetation dynamics

ACKNOWLEDGEMENTS AND REFERENCES

This research is funded by the Spanish Ministry of Economy and Competitiveness, TETISMED project (CGL2014-58127-C3-3-R References:

- Allen, R. G., Pereira, L. S., Raes, D., Smith, M.1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome 300(9), D05109.
- njankar R, Egger G, Jorde K, Goodwin P, Glenn NF. 2011. Dynamic floodplain vegetation model development for the Kootenai River, USA. Journal of Environmental Managemei 92(2011): 3058-3070. DOI: 10.1016/j.jenvman.2011.07.017
- Francés F, Vélez JI, Vélez JI, 2007. Split-parameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology, 332(1-2):226-240. DOI 10.1016/j.jhydrol.2006.06.032
- García-Arias A, Francés F, Morales-de la Cruz M., Real J., Vallés-Morán F., Martínez-Capel F., Garófano-Gómez V. 2014. Riparian evapotranspiration modelling: model description and implementation for predicting vegetation spatial distribution in semi-arid environments. Ecohydrology, 7:659-677. DOI: 10.1002/eco.1387 arcía-Arias A., Francés F. 2016. The RVDM model: modelling impacts, evolution and competition to determine riparian vegetation dynamics. Ecohydrology 9(3): 438-459. DOI:
- 10.1002/eco.1648 squato, M.; Medici, M.; Friend A.D.; Francés, F., 2015. Comparing two approaches for parsimonious vegetation modelling in semiarid regions using satellite data. Ecohydrology
- 8(6), 1024-1036. DOI: 10.1002/eco.1559 Ruiz-Pérez G., González-Sanchis M., Del Campo AD., Francés F., 2016. Can a parsimonious model implemented with satellite data be used for modelling the vegetation dynamics
- and water cycle in water-controlled environments?. Ecological modelling, 324, 45-53. DOI: 10.1016/j.ecolmodel.2016.01.002 Scanlon, T. M., Albertson, J. D. 2003. Inferred controls on tree/grass composition in a savanna ecosystem: Combining 16-year normalized difference vegetation index data with
- dynamic soil moisture model. Water resources research, 39(8)