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Approximate Bayesian Computation for
Forecasting in Hydrological models
Metodi Bayesian approssimati per le previsioni nei
modelli idrologici

Jonathan Romero-Cuéllar, Antonino Abbruzzo, Giada Adelfio and Félix Francés

Abstract Approximate Bayesian Computation (ABC) is a statistical tool for han-

dling parameter inference in a range of challenging statistical problems, mostly

characterized by an intractable likelihood function. In this paper, we focus on the

application of ABC to hydrological models, not as a tool for parametric inference,

but as a mechanism for generating probabilistic forecasts. This mechanism is re-

ferred as Approximate Bayesian Forecasting (ABF). The abcd water balance model

is applied to a case study on Aipe river basin in Columbia to demonstrate the appli-

cability of ABF. The predictivity of the ABF is compared with the predictivity of the

MCMC algorithm. The results show that the ABF method as similar performance

as the MCMC algorithm in terms of forecasting. Despite the latter is a very flexible

tool and it usually gives better parameter estimates it needs a tractable likelihood.

Abstract In questo articolo, il metodo chiamato Approximate Bayesian Compu-
tation (ABC) viene applicato ai modelli idrologici, non come uno strumento per
l’inferenza parametrica, ma come un meccanismo per generare previsioni proba-
bilistiche, dando luogo all’Approximate Bayesian Forecasting (ABF). L’ABF è ap-
plicato a un caso studio sul bacino del fiume Aipe in Colombia. Viene considerato
un modello idrologico semplice per dimostrare l’applicabilità di ABF e confrontarlo
con la predittività del metodo MCMC. Nonostante i risultati mostrano che il metodo
ABF e l’algoritmo MCMC non differiscono in termmini di previsioni ottenute, l’ABF
è comunque uno strumento molto flessibile e fornisce risultati utili anche quando si
è in presenza di una verosimiglianza intrattabile.

Key words: Predictive uncertainty, Probabilistic post-processing approach, Bayesian

forecasting, Sufficient statistics, Hydrological models, Intractable likelihood.
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1 Introduction

In hydrological models, predictions are crucial for supporting decision-making and

water management. Reliability of prediction of hydrologic outcomes is affected by

several sources of uncertainty such as input or forcing data uncertainty, initial con-

ditions, model uncertainty or epistemic error, parameters inference, output uncer-

tainty. So several sources of uncertainty affect the full predictive uncertainty, that

is the probability of occurrence of a future value of a response variable (stream-

flow, water level) conditional on all the covariates, usually provided by forecasting

models [9]. Therefore, the forecast approaches, rather than looking for determin-

istic predictions, essentially aim at quantifying predictive uncertainty. Predictive

uncertainty estimation in hydrological models is a challenge when dealing with in-

tractable likelihoods. The Approximate Bayesian Computation (ABC) overcomes

the likelihood-based approach via the use of sufficient statistics and simulated data

[1]. The idea behind the ABC approach was first introduced in population and evo-

lutionary genetics [6, 7]. The ABC has a wide range of application domains because

it is useful when an explicit likelihood function cannot be justified [10]. The main

focus, of the most of the studies about the ABC, is the quantification of uncertainty

about parameters [2]. Together with the increasing applications of ABC (see [4] for

recent surveys), attention has recently been paid to the theoretical properties of the

method, including the asymptotic behaviour of: the ABC posterior distributions, the

point estimates derived from those distributions, and the Bayes factors that condition

on summaries (see for instance [4]). The ABC approach in hydrological models is

introduced in [11], using the ABC to estimate posterior distributions of parameters

for simulation-based models.

The aim of this paper is to introduce the ABC as an approach for generating prob-

abilistic forecasts in hydrological models. This approach is referred to Approximate

Bayesian Forecasting (ABF) [2]. A streamflow forecasting on a case study of the

Aipe river basin in Columbia is used to show the potential strength of the ABF. Pre-

dictions derived from the ABF algorithm are compared to prediction derived from

the MCMC algorithm.

This paper is structured as follows. In the first section, we describe a simple hy-

drological model. In the second section, we describe the application of the ABC for

the hydrological model. In the third section, we compare the ABF and the MCMC

algorithm.

2 Approxiamte Bayesian Forecasting for the hydrological model

The abcd water balance model is a hydrological model for simulating streamflow

(see [8]). This model is a fairly general conceptual rainfall-runoff model which

transforms rainfall and potential evapotranspiration data to streamflow at the catch-

ment outlet. The model is comprised of two storage compartments: soil moisture

and groundwater. The soil moisture gains water from precipitation and loses wa-
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ter to evapotranspiration, surface runoff, and groundwater recharge. The groundwa-

ter compartment gains water from recharge and loses water as discharge. The total

streamflow, which is the outcome we are interested in, is the sum of surface runoff

from the soil moisture and groundwater discharge. It applies the continuity equation

to a control volume representing the upper soil zone, from which evapotranspiration

is assumed to occur, so that

Swt +ETt +Qt +Rt = Swt−1 +Pt , (1)

where Pt is a total precipitation for the month, ETt is actual evapotranspiration, Rt
is recharge to groundwater storage, Qt is upper zone contribution to runoff, and Swt
and Swt−1 represent upper soil zone soil moisture storage at the current and previous

time steps respectively. For the groundwater component, the mass balance equation

is

Sgt +Qgt = Sgt−1 +Rt , (2)

where Qgt is groundwater discharge, Sgt and Sgt−1 represent groundwater storage at

the current and previous time steps, respectively. More details about the abcd water

balance model are in [8] and [5]. Equations (1) and (2) produce the streamflow out-

put for t times. We denote this variable by ỹ = {ỹ1, . . . , ỹt , . . . , ỹT}. Starting from this

result, the ABC is used as hydrologic post-processor. Hydrologic post-processing

works directly on hydrologic model outputs by using a statistical model to represent

the relationship between model outputs and corresponding observations. It serves

the purpose of removing model biases from all upstream uncertainty sources. In this

paper, we use the ABC to estimate the parameters of the linear model

yt = β0 +β1ỹt + εt , (3)

where yt is the observed streamflow at time t, β0 and β1 are parameters, ỹt is the

output form the abcd model (equations (1) and (2)). The random variable εt is the

error term in the model, representing random fluctuations, i.e. the effect of factor

outside of our control or measurement, such that εt ∼ N(0,σ2), i.i.d. Specifically,

the ABC produces draws from an approximation of the posterior distribution of

θ = (β0,β1,σ2), i.e.

p(θ |y) ∝ p(y|θ)p(θ),

where p(θ) is the prior, p(y|θ) is the distribution of y conditional on the parameters.

Even though we can use ABC with intractable likelihood �(θ |y), we must be able

to simulate data from p(θ) and p(y|θ). We assume flat normal priors for β0 and β1

and Yt |θ ∼ N(μt = β0 +β1ỹt ,σ2). The pseudo code for the ABC is summarized in

Algorithm 1. Algorithm 1 thus samples θ and pseudo-data z from the joint posterior:

pε(θ ,z|η(y)) =
p(θ)p(z|θ)I(z)∫

Θ
∫

z p(θ)p(z|θ)I(z)dΘdz
(4)

The ABF produces the approximate predictive uncentanty formally defined as
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Algorithm 1 ABC accept/reject algorithm

1: θ i, i = 1, . . . ,N from p(θ)
2: zi = (zi

1,z
i
2, . . . ,z

i
T )

�, i = 1, . . . ,N, from the likelihood, p(·|θ i)
3: Select θ i such that:

d{η(y),η(zi)} ≤ ε

where η(·) is a vector statistic, d{·} is a distance criterion, and, given N, the tolarence level ε
is chosen to be small.

g(yT+1|y) =
∫

Θ
p(yT+1|θ ,y)pε(θ |η(y))dθ , (5)

where pε(θ |η(y)) =
∫

z pε(θ ,z|η(y))dz.

3 Streamflow data analysis

We use monthly data of mean areal precipitation, mean areal potential evaporation,

and so the other variables of the abcd model, from the Aipe river basin at Huila,

Colombia, that is a tropical basin described in the study by [3]. Fig. 1 represents

some characteristics of the hydrological behavior of the Aipe river basin. We ap-
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Fig. 1 Monthly time series of Aipe river basin. The blue histogram corresponds to the rainfall
(mm), the red line corresponds to the runoff (m3s−1) and the black line corresponds to the potential
evaporation (mm).
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ply both the ABC and the MCMC algorithm to obtain parameters estimation of

the model (3). Moreover, the ABF is used to assess the predictive uncertainty and

compared to the MCMC predictive distribution. The MCMC algorithm is used as

a benchmark, since it takes advantage of the likelihood which, for the model we

are dealing with, is tractable. To produce the results for the ABF we set the Eu-

clidean distance and choose the mean and the standard deviation as sufficient statis-

tics. In Fig. 2 we show the results of the MCMC and ABC approaches. Although

the MCMC and ABC posteriors for both the elements of θ = (β0,β1) are quite a

different one from the other (panel on the left and in the middle), the predictive

distributions are quite close and similar.
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Fig. 2 Marginal posteriors fro the parameters, both considering the MCMC and ABC methods
for the monthly time series of Aipe river basin (on the left and in the middle). Predictive density
functions both MCMC and ABC (on the right).

4 Conclusion

In this paper, we discuss the use of the Approximate Bayesian Forecasting for hydro-

logical models. The advantage of this tech niche is the applicability for intractable

likelihood. This characteristic can make this model very appealing in hydrological

forecasting. Even though the ABC seems inappropriate for parameter estimation

(probably due to the choice of sufficient statistics) it shows good performance (sim-

ilar to the MCMC algorithm) in terms of prediction.
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